This paper deals with some existence of random solutions and the Ulam stability for a class of Katugampola random fractional differential equations in Banach spaces. A random fixed point theorem is used for the existence of random solutions, and we prove that our problem is generalized Ulam-Hyers-Rassias stable. An illustrative example is presented in the last section.
Citation: Fouzia Bekada, Saïd Abbas, Mouffak Benchohra, Juan J. Nieto. Dynamics and stability for Katugampola random fractional differential equations[J]. AIMS Mathematics, 2021, 6(8): 8654-8666. doi: 10.3934/math.2021503
This paper deals with some existence of random solutions and the Ulam stability for a class of Katugampola random fractional differential equations in Banach spaces. A random fixed point theorem is used for the existence of random solutions, and we prove that our problem is generalized Ulam-Hyers-Rassias stable. An illustrative example is presented in the last section.
[1] | S. Abbas, M. Benchohra, M. A. Darwish, New stability results for partial fractional differential inclusions with not instantaneous impulses, Fract. Calc. Appl. Anal., 18 (2015), 172-191. |
[2] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, Walter de Gruyter GmbH & Co KG, 2018. |
[3] | S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Frac. Calc. Appl. Anal., 21 (2018), 1027-1045. doi: 10.1515/fca-2018-0056 |
[4] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, Springer Science & Business Media, 2012. |
[5] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, Nova Publishers, 2015. |
[6] | S. Abbas, M. Benchohra, A. Petrusel, Ulam stabilities for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theo., 2014 (2014), 1-13. |
[7] | S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fract. Calc. Appl. Anal., 20 (2017), 384-398. doi: 10.1515/fca-2017-0020 |
[8] | S. Abbas, M. Benchohra, S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators, Nonlinear Stud., 20 (2013), 623-641. |
[9] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29. doi: 10.1016/j.cam.2017.09.039 |
[10] | R. P. Agarwal, S. Hristova, D. O'Regan, K. Stefanova, Iterative algorithm for solving scalar fractional differential equations with Riemann-Liouville derivative and supremum, Algorithms, 13 (2020), 1-21. |
[11] | R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem, Commun. Nonlinear Sci., 96 (2021), 105678. doi: 10.1016/j.cnsns.2020.105678 |
[12] | R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, Optimal leader-following consensus of fractional opinion formation models, J. Comput. Appl. Math., 381 (2021), 1-16. |
[13] | F. Bekada, S. Abbas, M. Benchohra, Boundary value problem for Caputo-Fabrizio random fractional differential equations, Moroccan J. Pure Appl. Anal. (MJPAA), 6 (2020), 218-230. doi: 10.2478/mjpaa-2020-0017 |
[14] | M. Benchohra, S. Bouriah, J. J. Nieto, Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative, Symmetry, 11 (2019), 1-14. |
[15] | R. M. Evans, U. N. Katugampola, D. D. Edwards, Applications of fractional calculus in solving Abel-type integral equations: Surfacee volume reaction problem, Comput. Math. Appl., 73 (2017), 1346-1362. doi: 10.1016/j.camwa.2016.12.005 |
[16] | S. Hristova, A. Dobreva, Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay, AIMS Mathematics, 5 (2020), 3809-3824. doi: 10.3934/math.2020247 |
[17] | D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkhuser, Basel, 1998. |
[18] | S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl, 67 (1979), 261-273. doi: 10.1016/0022-247X(79)90023-4 |
[19] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, 2001. |
[20] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science & Business Media, 2011. |
[21] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15. |
[22] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[23] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[24] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[25] | I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes- Bolyai, Math., LIV (2009), 125-133. |
[26] | I. A. Rus, Ulam stability of operatorial equations, Fixed Point Theor., 10 (2009), 305-320. |
[27] | T. M. Rassias, On the stability of linear mappings in Banach spaces, P. Am. Math. Soc, 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[28] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2010. |
[29] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theo., 2011 (2011), 1-10. |
[30] | J. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 2530-2538. doi: 10.1016/j.cnsns.2011.09.030 |
[31] | W. Wei, X. Li, X. Li, New stability results for fractional integral equation, Comput. Math. Appl., 64 (2012), 3468-3476. doi: 10.1016/j.camwa.2012.02.057 |
[32] | M. Yang, Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20 (2017), 679-705. |
[33] | S. Zeng, D. Baleanu, Y. Bai, G. Wu, Fractional differential equations of Caputoo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554. |
[34] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. |