This paper explores a fractional integro-differential equation with boundary conditions that incorporate the Hilfer-Hadamard fractional derivative. We model the RLC circuit using fractional calculus and define weighted spaces of continuous functions. The existence and uniqueness of solutions are established, along with their Ulam-Hyers and Ulam-Hyers-Rassias stability. Our analysis employs Schaefer's fixed-point theorem and Banach's contraction principle. An illustrative example is presented to validate our findings.
Citation: Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima. Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models[J]. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
This paper explores a fractional integro-differential equation with boundary conditions that incorporate the Hilfer-Hadamard fractional derivative. We model the RLC circuit using fractional calculus and define weighted spaces of continuous functions. The existence and uniqueness of solutions are established, along with their Ulam-Hyers and Ulam-Hyers-Rassias stability. Our analysis employs Schaefer's fixed-point theorem and Banach's contraction principle. An illustrative example is presented to validate our findings.
[1] | S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017 (2017), 180. https://doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1 |
[2] | S. Abbas, M. Benchohra, J. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010 |
[3] | B. Ahmad, S. K Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195 |
[4] | M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 267. https://doi.org/10.1186/s13662-021-03414-9 doi: 10.1186/s13662-021-03414-9 |
[5] | D. Baleanu, R. P. Agarwal, R. K. Parmar, M. Alqurashi, S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl., 10 (2017), 2914–2924. https://doi.org/10.22436/jnsa.010.06 doi: 10.22436/jnsa.010.06 |
[6] | Y. Başcı, S. Öğrekçi, A. Mısır, On Hyers-Ulam stability for fractional differential equations including the new Caputo-Fabrizio fractional derivative, Mediterr. J. Math., 16 (2019), 131. https://doi.org/10.1007/s00009-019-1407-x doi: 10.1007/s00009-019-1407-x |
[7] | P. Borisut, P. Kumam, I. Ahmed, K. Sitthithakerngkiet, Nonlinear Caputo fractional derivative with nonlocal Riemann-Liouville fractional integral condition via fixed-point theorems, Symmetry, 11 (2019), 829. https://doi.org/10.3390/sym11060829 doi: 10.3390/sym11060829 |
[8] | V. S. Ertürk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and stability results for nonlocal boundary value problems of fractional order, Bound. Value Probl., 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0 doi: 10.1186/s13661-022-01606-0 |
[9] | J. Hadamard, Essai sur l'etude des fonctions donnes par leur developpement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186. |
[10] | E. Fadhal, K. Abuasbeh, M. Manigandan, M. Awadalla, Applicability of Mönch's fixed-point theorem on a system of (k, $\psi$)-Hilfer type fractional differential equations, Symmetry, 14 (2022), 2572. https://doi.org/10.3390/sym14122572 doi: 10.3390/sym14122572 |
[11] | H. Fan, J. Tang, K. Shi, Y. Zhao, Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link memristive neural networks with multi-delays, Fractal Fract., 7 (2023), 495. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495 |
[12] | J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, M. A. Taneco-Hernandez, G. V. Guerrero-Ramírez, Electrical circuits RC and RL involving fractional operators with bi-order, Adv. Mech. Eng., 9 (2017), 6. https://doi.org/10.1177/1687814017707132 doi: 10.1177/1687814017707132 |
[13] | J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives, Appl. Math. Model., 40 (2016), 9079–9094. https://doi.org/10.1016/j.apm.2016.05.041 doi: 10.1016/j.apm.2016.05.041 |
[14] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[15] | R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318. |
[16] | S. Hristova, A. Benkerrouche, M. Said Souid, A. Hakem, Boundary value problems of Hadamard fractional differential equations of variable order, Symmetry, 13 (2021), 896. https://doi.org/10.3390/sym13050896 doi: 10.3390/sym13050896 |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, elsevier, 2006. |
[18] | G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303. doi: 10.3934/mbe.2023303 |
[19] | M. Malarvizhi, S. Karunanithi, N. Gajalakshmi, Numerical analysis using RK-4 in transient analysis of rlc circuit, Adv. Math. Sci. J., 9 (2020), 6115–6124, 2020. https://doi.org/10.37418/amsj.9.8.79 doi: 10.37418/amsj.9.8.79 |
[20] | S. Muthaiah, M. Murugesan, N. G. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theor. Nonlinear Anal. Appl., 3 (1019), 162–173. https://doi.org/10.31197/atnaa.579701 doi: 10.31197/atnaa.579701 |
[21] | C. Promsakon, S. K. Ntouyas, J. Tariboon, Hilfer-Hadamard nonlocal integro-multipoint fractional boundary value problems, J. Funct. Space., 2021 (2021), 8031524. https://doi.org/10.1155/2021/8031524 doi: 10.1155/2021/8031524 |
[22] | A. Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential equations, Adv. Differ. Equ., 2021 (2021), 198. https://doi.org/10.1186/s13662-021-03358-0 doi: 10.1186/s13662-021-03358-0 |
[23] | A. A. kilbas, O. I. Marichev, S. G. Samko, Fractional intearals and derivatives: theorv and agglications, 1993. |
[24] | Y. Sang, L. He, Y. Wang, Y. Ren, N. Shi, Existence of positive solutions for a class of fractional differential equations with the derivative term via a new fixed-point theorem, Adv. Differ. Equ., 2021 (2021), 156. https://doi.org/10.1186/s13662-021-03318-8 doi: 10.1186/s13662-021-03318-8 |
[25] | C. Wang, T. Z. Xu, Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., 60 (2015), 383–393. https://doi.org/10.1007/s10492-015-0102-x doi: 10.1007/s10492-015-0102-x |
[26] | A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1002/mma.4405 doi: 10.1002/mma.4405 |