Research article

The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay

  • Received: 23 June 2023 Revised: 23 August 2023 Accepted: 24 August 2023 Published: 19 September 2023
  • MSC : 35B41, 37B55, 76D05

  • In this article, the global well-posedness of weak solutions for 2D non-autonomous g-Navier-Stokes equations on some bounded domains were investigated by the Faedo-Galerkin method. Then the existence of pullback attractors for 2D g-Navier-Stokes equations with nonlinear damping and time delay was obtained using the method of pullback condition (PC).

    Citation: Xiaoxia Wang, Jinping Jiang. The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay[J]. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363

    Related Papers:

  • In this article, the global well-posedness of weak solutions for 2D non-autonomous g-Navier-Stokes equations on some bounded domains were investigated by the Faedo-Galerkin method. Then the existence of pullback attractors for 2D g-Navier-Stokes equations with nonlinear damping and time delay was obtained using the method of pullback condition (PC).



    加载中


    [1] Y. G. Sinai, K. M. Khanin, Renormalization group method in the theory of dynamical systems, Int. J. Modern Phys. B, 2 (1988), 147–165. https://doi.org/10.1142/S0217979288000123 doi: 10.1142/S0217979288000123
    [2] F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain, Math. Model. Numer. Anal., 23 (1989), 359–370. https://doi.org/10.1051/m2an/1989230303591 doi: 10.1051/m2an/1989230303591
    [3] T. Caraballo, G. Łukaszewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484–498. https://doi.org/10.1016/j.na.2005.03.111 doi: 10.1016/j.na.2005.03.111
    [4] Y. J. Wang, C. K. Zhong, S. F. Zhou, Pullback attractors of nonautonomous dynamical systems, Discrete Cont. Dyn. Syst., 16 (2006), 587–614. https://doi.org/10.3934/dcds.2006.16.587 doi: 10.3934/dcds.2006.16.587
    [5] C. Boldrighini, S. Frigio, P. Maponi, A. Pellegrinotti, Y. G. Sinai, An antisymmetric solution of the 3D incompressible Navier-Stokes equations with "Tornado-Like" behavior, J. Exp. Theor. Phys., 131 (2020), 356–360. https://doi.org/10.1134/S1063776120060023 doi: 10.1134/S1063776120060023
    [6] X. J. Cai, Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
    [7] Z. J. Zhang, X. L. Wu, M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414–419. https://doi.org/10.1016/j.jmaa.2010.11.019 doi: 10.1016/j.jmaa.2010.11.019
    [8] Y. Jia, X. W. Zhang, B. Q. Dong, The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736–1747. https://doi.org/10.1016/j.nonrwa.2010.11.006 doi: 10.1016/j.nonrwa.2010.11.006
    [9] X. L. Song, F. Liang, J. H. Wu, Pullback $D$-attractors for the three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 1–15. https://doi.org/10.1186/s13661-016-0654-z doi: 10.1186/s13661-016-0654-z
    [10] E. S. Baranovskii, M. A. Artemov, Model for aqueous polymer solutions with damping term: Solvability and vanishing relaxation limit, Polymers, 14 (2022), 1–17. https://doi.org/10.3390/polym14183789 doi: 10.3390/polym14183789
    [11] J. Roh, g-Navier-Stokes equations, University of Minnesota, 2001.
    [12] J. Roh, Dynamics of the g-Navier-stokes equations, J. Differ. Equ., 211 (2005), 452–484. https://doi.org/10.1016/j.jde.2004.08.016 doi: 10.1016/j.jde.2004.08.016
    [13] H. O. Bae, J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math., 8 (2004), 85–102. https://doi.org/10.11650/twjm/1500558459 doi: 10.11650/twjm/1500558459
    [14] M. Kwak, H. Kwean, J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl., 315 (2006), 436–461. https://doi.org/10.1016/j.jmaa.2005.04.050 doi: 10.1016/j.jmaa.2005.04.050
    [15] J. P. Jiang, Y. R. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on ${\mathrm{R}}^2$, Appl. Math. Comput., 215 (2009), 1068–1076. https://doi.org/10.1016/j.amc.2009.06.035 doi: 10.1016/j.amc.2009.06.035
    [16] J. P. Jiang, Y. R. Hou, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech., 31 (2010), 697–708. https://doi.org/10.1007/s10483-010-1304-x doi: 10.1007/s10483-010-1304-x
    [17] D. T. Quyet, Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations, Acta Math. Vietnam., 40 (2015), 637–651. https://doi.org/10.1007/s40306-014-0073-0 doi: 10.1007/s40306-014-0073-0
    [18] X. X. Wang, J. P. Jiang, The long-time behavior of 2D nonautonomous g-Navier-Stokes equations with weak dampness and time delay, J. Funct. Spaces, 2022 (2022), 1–11. https://doi.org/10.1155/2022/2034264 doi: 10.1155/2022/2034264
    [19] M. Kaya, A. O. Celebi, Existence of weak solutions of the g-Kelvin-Voigt equation, Math. Comput. Model., 49 (2009), 497–504. https://doi.org/10.1016/j.mcm.2008.03.005 doi: 10.1016/j.mcm.2008.03.005
    [20] J. K. Hale, Asymptotic behaviour of dissipative dynamical systems, Providence, RI: American Mathematical Society, 1988.
    [21] G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Cont. Dyn. Systs. B, 9 (2008), 643–659. https://doi.org/10.3934/dcdsb.2008.9.643 doi: 10.3934/dcdsb.2008.9.643
    [22] C. D. Zhao, L. Yang, Pullback attractors and invariant measures for the non-autonomous globally modified Navier-Stokes equations, Commun. Math. Sci., 15 (2017), 1565–1580. https://doi.org/10.4310/cms.2017.v15.n6.a4 doi: 10.4310/cms.2017.v15.n6.a4
    [23] C. D. Zhao, T. Caraballo, G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differ. Equ., 281 (2021), 1–32. https://doi.org/10.1016/j.jde.2021.01.039 doi: 10.1016/j.jde.2021.01.039
    [24] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non-lineaires, Paris: Dunod, 1969.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(804) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog