Research article

Statistical inference for the Nadarajah-Haghighi distribution based on ranked set sampling with applications

  • Received: 14 May 2023 Revised: 14 June 2023 Accepted: 25 June 2023 Published: 07 July 2023
  • MSC : 2E15, 62G30, 62G32, 62M20, 62F25

  • In this article, the maximum likelihood and Bayes inference methods are discussed for determining the two unknown parameters and specific lifetime parameters of the Nadarajah-Haghighi distribution, such as the survival and hazard rate functions, with the inclusion of ranked set sampling and simple random sampling. The estimated confidence intervals for the two parameters and any function of them are developed based on the Fisher-information matrix. Metropolis-Hastings algorithm and Lindley-approximation are used for generating the Bayes estimates and related highest posterior density credible ranges for the unknown parameters and reliability parameters under the presumption of conjugate gamma priors. A Monte-Carlo simulation study and a real-life data set have been used to assess the efficacy of the proposed methods.

    Citation: Haidy A. Newer, Mostafa M. Mohie El-Din, Hend S. Ali, Isra Al-Shbeil, Walid Emam. Statistical inference for the Nadarajah-Haghighi distribution based on ranked set sampling with applications[J]. AIMS Mathematics, 2023, 8(9): 21572-21590. doi: 10.3934/math.20231099

    Related Papers:

  • In this article, the maximum likelihood and Bayes inference methods are discussed for determining the two unknown parameters and specific lifetime parameters of the Nadarajah-Haghighi distribution, such as the survival and hazard rate functions, with the inclusion of ranked set sampling and simple random sampling. The estimated confidence intervals for the two parameters and any function of them are developed based on the Fisher-information matrix. Metropolis-Hastings algorithm and Lindley-approximation are used for generating the Bayes estimates and related highest posterior density credible ranges for the unknown parameters and reliability parameters under the presumption of conjugate gamma priors. A Monte-Carlo simulation study and a real-life data set have been used to assess the efficacy of the proposed methods.



    加载中


    [1] S. K. Ashour, A. A. El-Sheikh, A. Elshahhat, Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution, Sankhya A, 84 (2020), 885–923. https://doi.org/10.1007/s13171-019-00175-2 doi: 10.1007/s13171-019-00175-2
    [2] T. R. Dell, J. L. Clutter, Ranked set sampling theory with order statistics background, Biometrics, (1972), 545–555. https://doi.org/10.2307/2556166 doi: 10.2307/2556166
    [3] W. H. Greene, Econometric analysis, 7 Eds., Pearson Prentice-Hall, Upper Saddle River, 2012.
    [4] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97
    [5] J. Huang, Asymptotic properties of the NPMLE of a distribution function based on ranked set samples, Ann. Statist., 25 (1997), 1036–1049. https://doi.org/10.1214/aos/1069362737 doi: 10.1214/aos/1069362737
    [6] D. Kumar, S. Dey, S. Nadarajah, Extended exponential distribution based on order statistics, Commun. Stat., 46 (2017), 9166–9184. https://doi.org/10.1080/03610926.2016.1205625 doi: 10.1080/03610926.2016.1205625
    [7] D. Kumar, M. R. Malik, S. Dey, M. Q. Shahbaz, Recurrence relations for moments and estimation of parameters of extended exponential distribution based on progressive Type-Ⅱ right-censored order statistics, J. Stat. Theory Appl., 18 (2019), 171–181. https://doi.org/10.2991/jsta.d.190514.003 doi: 10.2991/jsta.d.190514.003
    [8] P. H. Kvam, F. J. Samaniego, Nonparametric maximum likelihood estimation based on ranked set samples, J. Am. Stat. Assoc., 89 (1994), 526–537. https://doi.org/10.1080/01621459.1994.10476777 doi: 10.1080/01621459.1994.10476777
    [9] J. F. Lawless, Statistical models and methods for lifetime data, New York: John Wiley & Sons, 2003. https://doi.org/10.1002/9781118033005
    [10] D. V. Lindley, Approximate Bayesian methods, Trab. Estadistica Invest. Operativa, 31 (1980), 223–245. https://doi.org/10.1007/BF02888353 doi: 10.1007/BF02888353
    [11] S. N. MacEachern, Ö. Öztürk, D. A. Wolfe, G. V. Stark, A new ranked set sample estimator of variance, J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.), 64 (2002), 177–188. https://doi.org/10.1111/1467-9868.00331 doi: 10.1111/1467-9868.00331
    [12] G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Aust. J. Agr. Res., 3 (1952), 385–390. https://doi.org/10.1071/AR9520385 doi: 10.1071/AR9520385
    [13] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [14] M. M. Mohie El-Din, M. S. Kotb, H. A. Newer, Bayesian estimation and prediction for Pareto distribution based on ranked set sampling, J. Stat. Appl. Pro., 4 (2015), 211–221. http://dx.doi.org/10.12785/jsap/040203 doi: 10.12785/jsap/040203
    [15] M. M. M. El-Din, M. S. Kotb, H. A. Newer, Bayesian estimation and prediction of the Rayleigh distribution based on ordered ranked set sampling under Type-Ⅱ doubly censored samples, J. Stat. Appl. Pro. Lett., 8 (2021), 83–95. http://dx.doi.org/10.18576/jsapl/080202 doi: 10.18576/jsapl/080202
    [16] S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558. https://doi.org/10.1080/02331881003678678 doi: 10.1080/02331881003678678
    [17] S. A. Salem, O. E. Abo-Kasem, M. A. Elassar, Inference for inverse Weibull competing risks data under adaptive progressive hybrid censored with engineering application, Pak. J. Stat., 39 (2023), 125–174.
    [18] S. L. Stokes, Estimation of variance using judgment ordered ranked set samples, Biometrics, 36 (1980), 35–42. https://doi.org/10.2307/2530493 doi: 10.2307/2530493
    [19] S. L. Stokes, T. W. Sager, Characterization of a ranked-set sample with application to estimating distribution functions, J. Am. Stat. Assoc., 83 (1988), 374–381.
    [20] S. Singh, U. Singh, M. Kumar, P. Vishwakarma, Classical and Bayesian inference for an extension of the exponential distribution under progressive Type-Ⅱ censored data with binomial removals, J. Stat. Appl. Pro. Lett., 1 (2014), 75–86. http://dx.doi.org/10.12785/jsapl/010304 doi: 10.12785/jsapl/010304
    [21] U. Singh, S. K. Singh, A. S. Yadav, Bayesian estimation for extension of exponential distribution under progressive Type-Ⅱ censored data using Markov Chain Monte Carlo method, J. Stat. Appl. Pro., 4 (2015), 275–283. http://dx.doi.org/10.12785/jsap/040211 doi: 10.12785/jsap/040211
    [22] K. Takahasi, K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1–31.
    [23] S. Wang, W. Chen, M. Chen, Y. Zhou, Maximum likelihood estimation of the parameters of the inverse Gaussian distribution using maximum rank set sampling with unequal samples, Math. Popul. Stud., 30 (2021), 1–21. https://doi.org/10.1080/08898480.2021.1996822 doi: 10.1080/08898480.2021.1996822
    [24] E. Zamanzade, M. Mahdizadeh, Using ranked set sampling with extreme ranks in estimating the population proportion, Stat. Methods Med. Res., 29 (2020), 165–177. https://doi.org/10.1177/0962280218823793 doi: 10.1177/0962280218823793
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1105) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog