Citation: Abdul Qadeer Khan, Fakhra Bibi, Saud Fahad Aldosary. Bifurcation analysis and chaos in a discrete Hepatitis B virus model[J]. AIMS Mathematics, 2024, 9(7): 19597-19625. doi: 10.3934/math.2024956
[1] | G. Caccamo, F. Saffioti, G. Raimondo, Hepatitis B virus and hepatitis C virus dual infection, World J. Gastroenterol., 20 (2014), 14559–14567. https://doi.org/10.3748/wjg.v20.i40.14559 doi: 10.3748/wjg.v20.i40.14559 |
[2] | R. Tedder, M. A. Zuckerman, N. S. Brink, A. H. Goldstone, A. B. E. M. Fielding, S. Blair, et al., Hepatitis B transmission from contaminated cryopreservation tank, The Lancet, 346 (1995), 137–140. https://doi.org/10.1016/s0140-6736(95)91207-x doi: 10.1016/s0140-6736(95)91207-x |
[3] | S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94 (1997), 6971–6976. https://doi.org/10.1073/pnas.94.13.6971 doi: 10.1073/pnas.94.13.6971 |
[4] | R. Qesmi, J. Wu, J. Wu, J. M. Heffernan, Influence of backward bifurcation in a model of hepatitis B and C viruses, Math. Biosci., 224 (2010), 118–125. https://doi.org/10.1016/j.mbs.2010.01.002 doi: 10.1016/j.mbs.2010.01.002 |
[5] | S. Li, A. Hussain, I. U. Khan, A. El Koufi, A. Mehmood, The continuous and discrete stability characterization of Hepatitis B deterministic model, Math. Probl. Eng., 2022 (2022), 1893665. https://doi.org/10.1155/2022/1893665 doi: 10.1155/2022/1893665 |
[6] | H. Chen, R. Xu, Stability and bifurcation analysis of a viral infection model with delayed immune response, J. Appl. Anal. Comput., 7 (2017), 532–553. https://doi.org/10.11948/2017033 doi: 10.11948/2017033 |
[7] | W. Wang, Y. Nie, W. Li, T. Lin, M. S. Shang, S. Su, et al., Epidemic spreading on higher-order networks, Phys. Rep., 1056 (2024), 1–70. https://doi.org/10.1016/j.physrep.2024.01.003 doi: 10.1016/j.physrep.2024.01.003 |
[8] | E. Southall, Z. Ogi-Gittins, A. R. Kaye, W. S. Hart, F. A. Lovell-Read, R. N. Thompson, A practical guide to mathematical methods for estimating infectious disease outbreak risks, J. Theor. Biol., 562 (2023), 111417. https://doi.org/10.1016/j.jtbi.2023.111417 doi: 10.1016/j.jtbi.2023.111417 |
[9] | J. Yang, M. Gong, G. Q. Sun, Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment, J. Differ. Equ., 377 (2023), 71–112. https://doi.org/10.1016/j.jde.2023.09.001 doi: 10.1016/j.jde.2023.09.001 |
[10] | M. O. Adewole, F. A. Abdullah, M. K. Ali, Dynamics of hand, foot and mouth disease in children under 15 years old: A case study of Malaysia using age-structured modelling approach, Appl. Math. Model., 125 (2024), 728–749. https://doi.org/10.1016/j.apm.2023.10.002 doi: 10.1016/j.apm.2023.10.002 |
[11] | S. M. Liu, Z. Bai, G. Q. Sun, Global dynamics of a reaction-diffusion brucellosis model with spatiotemporal heterogeneity and nonlocal delay, Nonlinearity, 36 (2023), 5699. https://doi.org/10.1088/1361-6544/acf6a5 doi: 10.1088/1361-6544/acf6a5 |
[12] | J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/10.3390/math11051092 doi: 10.3390/math11051092 |
[13] | O. Diekmann, H. G. Othmer, R. Planqué, M. C. Bootsma, The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics, Proc. Natl. Acad. Sci., 118 (2021), e2106332118. https://doi.org/10.1073/pnas.2106332118 doi: 10.1073/pnas.2106332118 |
[14] | J. Ripoll, J. Saldaña, J. C. Senar, Evolutionarily stable transition rates in a stage-structured model. An application to the analysis of size distributions of badges of social status, Math. Biosci., 190 (2004), 145–181. https://doi.org/10.1016/j.mbs.2004.03.003 doi: 10.1016/j.mbs.2004.03.003 |
[15] | M. A. Nowak, C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74 doi: 10.1126/science.272.5258.74 |
[16] | J. Pang, J. A. Cui, J. Hui, The importance of immune responses in a model of hepatitis B virus, Nonlinear Dyn., 67 (2012), 723–734. https://doi.org/10.1007/s11071-011-0022-6 doi: 10.1007/s11071-011-0022-6 |
[17] | E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, New York: Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781584887669 |
[18] | E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, New York: Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9781420037722 |
[19] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher-order with applications, Dordrecht: Springer Science & Business Media, 1993. https://doi.org/10.1007/978-94-017-1703-8 |
[20] | H. Sedaghat, Nonlinear difference equations, theory with applications to social science models, Dordrecht: Springer Science & Business Media, 2003. https://doi.org/10.1007/978-94-017-0417-5 |
[21] | M. R. Kulenović, G. Ladas, Dynamics of second-order rational difference equations: with open problems and conjectures, New York: Chapman and Hall/CRC, 2001. https://doi.org/10.1201/9781420035384 |
[22] | A. Wikan, Discrete dynamical systems with an introduction to discrete optimization problems, London, 2013. |
[23] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 2013. https://doi.org/10.1007/978-1-4612-1140-2 |
[24] | Y. A. Kuznetsov, Elements of applied bifurcation theorey, New York: Springer Science & Business Media, 2004. https://doi.org/10.1007/978-1-4757-3978-7 |
[25] | H. N. Agiza, E. M. Elabbssy, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal. Real, 10 (2009), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029 |
[26] | A. M. Yousef, S. M. Salman, A. A. Elsadany, Stability and bifurcation analysis of a delayed discrete predator-prey model, Int. J. Bifurc. Chaos., 28 (2018), 1850116. https://doi.org/10.1142/S021812741850116X doi: 10.1142/S021812741850116X |
[27] | A. Q. Khan, J. Ma, D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037 |
[28] | A. Q. Khan, J. Ma, D. Xiao, Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect, J. Biol. Dyn., 11 (2017), 121–146. https://doi.org/10.1080/17513758.2016.1254287 doi: 10.1080/17513758.2016.1254287 |
[29] | E. M. Elabbasy, H. N Agiza, H. El-Metwally, A. A. Elsadany, Bifurcation analysis, chaos and control in the Burgers mapping, Int. J. Nonlinear Sci., 4 (2007), 171–185. |
[30] | G. Wen, Criterion to identify hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. https://doi.org/10.1103/PhysRevE.72.026201 doi: 10.1103/PhysRevE.72.026201 |
[31] | S. Yao, New bifurcation critical criterion of Flip-Neimark-Sacker bifurcations for two-parameterized family of $n$-dimensional discrete systems, Discrete Dyn. Nat. Soc., 2012 (2012), 264526. https://doi.org/10.1155/2012/264526 doi: 10.1155/2012/264526 |
[32] | B. Xin, T. Chen, J. Ma, Neimark-Sacker bifurcation in a discrete-time financial system, Discrete Dyn. Nat. Soc., 2010 (2010), 405639. https://doi.org/10.1155/2010/405639 doi: 10.1155/2010/405639 |
[33] | G. Wen, S. Chen, Q. Jin, A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker, J. Sound Vib., 311 (2008), 212–223. https://doi.org/10.1016/j.jsv.2007.09.003 doi: 10.1016/j.jsv.2007.09.003 |
[34] | M. Pituk, More on Poincaré's and Perron's theorems for difference equations, J. Differ. Equ. Appl., 8 (2002), 201–216. https://doi.org/10.1080/10236190211954 doi: 10.1080/10236190211954 |
[35] | S. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5 |
[36] | S. Lynch, Dynamical systems with applications using mathematica, Boston: Birkhäuser, 2007. https://doi.org/10.1007/978-0-8176-4586-1 |