Research article

Bifurcation analysis and chaos in a discrete Hepatitis B virus model

  • Received: 06 February 2024 Revised: 28 May 2024 Accepted: 29 May 2024 Published: 14 June 2024
  • MSC : 35B35, 40A05, 92D25

  • In this paper, we have delved into the intricate dynamics of a discrete-time Hepatitis B virus (HBV) model, shedding light on its local dynamics, topological classifications at equilibrium states, and pivotal epidemiological parameters such as the basic reproduction number. Our analysis extended to exploring convergence rates, control strategies, and bifurcation phenomena crucial for understanding the behavior of the HBV system. Employing linear stability theory, we meticulously examined the local dynamics of the HBV model, discerning various equilibrium states and their topological classifications. Subsequently, we identified bifurcation sets at these equilibrium points, providing insights into the system's stability and potential transitions. Further, through the lens of bifurcation theory, we conducted a comprehensive bifurcation analysis, unraveling the intricate interplay of parameters that govern the HBV model's behavior. Our investigation extended beyond traditional stability analysis to explore chaos and convergence rates, enriching our understanding of the dynamics of the understudied HBV model. Finally, we validated our theoretical findings through numerical simulations, confirming the robustness and applicability of our analysis in real-world scenarios. By integrating biological and epidemiological insights into our mathematical framework, we offered a holistic understanding of the dynamics of HBV transmission dynamics, with implications for public health interventions and disease control strategies.

    Citation: Abdul Qadeer Khan, Fakhra Bibi, and Saud Fahad Aldosary. Bifurcation analysis and chaos in a discrete Hepatitis B virus model[J]. AIMS Mathematics, 2024, 9(7): 19597-19625. doi: 10.3934/math.2024956

    Related Papers:

  • In this paper, we have delved into the intricate dynamics of a discrete-time Hepatitis B virus (HBV) model, shedding light on its local dynamics, topological classifications at equilibrium states, and pivotal epidemiological parameters such as the basic reproduction number. Our analysis extended to exploring convergence rates, control strategies, and bifurcation phenomena crucial for understanding the behavior of the HBV system. Employing linear stability theory, we meticulously examined the local dynamics of the HBV model, discerning various equilibrium states and their topological classifications. Subsequently, we identified bifurcation sets at these equilibrium points, providing insights into the system's stability and potential transitions. Further, through the lens of bifurcation theory, we conducted a comprehensive bifurcation analysis, unraveling the intricate interplay of parameters that govern the HBV model's behavior. Our investigation extended beyond traditional stability analysis to explore chaos and convergence rates, enriching our understanding of the dynamics of the understudied HBV model. Finally, we validated our theoretical findings through numerical simulations, confirming the robustness and applicability of our analysis in real-world scenarios. By integrating biological and epidemiological insights into our mathematical framework, we offered a holistic understanding of the dynamics of HBV transmission dynamics, with implications for public health interventions and disease control strategies.



    加载中


    [1] G. Caccamo, F. Saffioti, G. Raimondo, Hepatitis B virus and hepatitis C virus dual infection, World J. Gastroenterol., 20 (2014), 14559–14567. https://doi.org/10.3748/wjg.v20.i40.14559 doi: 10.3748/wjg.v20.i40.14559
    [2] R. Tedder, M. A. Zuckerman, N. S. Brink, A. H. Goldstone, A. B. E. M. Fielding, S. Blair, et al., Hepatitis B transmission from contaminated cryopreservation tank, The Lancet, 346 (1995), 137–140. https://doi.org/10.1016/s0140-6736(95)91207-x doi: 10.1016/s0140-6736(95)91207-x
    [3] S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94 (1997), 6971–6976. https://doi.org/10.1073/pnas.94.13.6971 doi: 10.1073/pnas.94.13.6971
    [4] R. Qesmi, J. Wu, J. Wu, J. M. Heffernan, Influence of backward bifurcation in a model of hepatitis B and C viruses, Math. Biosci., 224 (2010), 118–125. https://doi.org/10.1016/j.mbs.2010.01.002 doi: 10.1016/j.mbs.2010.01.002
    [5] S. Li, A. Hussain, I. U. Khan, A. El Koufi, A. Mehmood, The continuous and discrete stability characterization of Hepatitis B deterministic model, Math. Probl. Eng., 2022 (2022), 1893665. https://doi.org/10.1155/2022/1893665 doi: 10.1155/2022/1893665
    [6] H. Chen, R. Xu, Stability and bifurcation analysis of a viral infection model with delayed immune response, J. Appl. Anal. Comput., 7 (2017), 532–553. https://doi.org/10.11948/2017033 doi: 10.11948/2017033
    [7] W. Wang, Y. Nie, W. Li, T. Lin, M. S. Shang, S. Su, et al., Epidemic spreading on higher-order networks, Phys. Rep., 1056 (2024), 1–70. https://doi.org/10.1016/j.physrep.2024.01.003 doi: 10.1016/j.physrep.2024.01.003
    [8] E. Southall, Z. Ogi-Gittins, A. R. Kaye, W. S. Hart, F. A. Lovell-Read, R. N. Thompson, A practical guide to mathematical methods for estimating infectious disease outbreak risks, J. Theor. Biol., 562 (2023), 111417. https://doi.org/10.1016/j.jtbi.2023.111417 doi: 10.1016/j.jtbi.2023.111417
    [9] J. Yang, M. Gong, G. Q. Sun, Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment, J. Differ. Equ., 377 (2023), 71–112. https://doi.org/10.1016/j.jde.2023.09.001 doi: 10.1016/j.jde.2023.09.001
    [10] M. O. Adewole, F. A. Abdullah, M. K. Ali, Dynamics of hand, foot and mouth disease in children under 15 years old: A case study of Malaysia using age-structured modelling approach, Appl. Math. Model., 125 (2024), 728–749. https://doi.org/10.1016/j.apm.2023.10.002 doi: 10.1016/j.apm.2023.10.002
    [11] S. M. Liu, Z. Bai, G. Q. Sun, Global dynamics of a reaction-diffusion brucellosis model with spatiotemporal heterogeneity and nonlocal delay, Nonlinearity, 36 (2023), 5699. https://doi.org/10.1088/1361-6544/acf6a5 doi: 10.1088/1361-6544/acf6a5
    [12] J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/10.3390/math11051092 doi: 10.3390/math11051092
    [13] O. Diekmann, H. G. Othmer, R. Planqué, M. C. Bootsma, The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics, Proc. Natl. Acad. Sci., 118 (2021), e2106332118. https://doi.org/10.1073/pnas.2106332118 doi: 10.1073/pnas.2106332118
    [14] J. Ripoll, J. Saldaña, J. C. Senar, Evolutionarily stable transition rates in a stage-structured model. An application to the analysis of size distributions of badges of social status, Math. Biosci., 190 (2004), 145–181. https://doi.org/10.1016/j.mbs.2004.03.003 doi: 10.1016/j.mbs.2004.03.003
    [15] M. A. Nowak, C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74 doi: 10.1126/science.272.5258.74
    [16] J. Pang, J. A. Cui, J. Hui, The importance of immune responses in a model of hepatitis B virus, Nonlinear Dyn., 67 (2012), 723–734. https://doi.org/10.1007/s11071-011-0022-6 doi: 10.1007/s11071-011-0022-6
    [17] E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, New York: Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781584887669
    [18] E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, New York: Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9781420037722
    [19] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher-order with applications, Dordrecht: Springer Science & Business Media, 1993. https://doi.org/10.1007/978-94-017-1703-8
    [20] H. Sedaghat, Nonlinear difference equations, theory with applications to social science models, Dordrecht: Springer Science & Business Media, 2003. https://doi.org/10.1007/978-94-017-0417-5
    [21] M. R. Kulenović, G. Ladas, Dynamics of second-order rational difference equations: with open problems and conjectures, New York: Chapman and Hall/CRC, 2001. https://doi.org/10.1201/9781420035384
    [22] A. Wikan, Discrete dynamical systems with an introduction to discrete optimization problems, London, 2013.
    [23] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 2013. https://doi.org/10.1007/978-1-4612-1140-2
    [24] Y. A. Kuznetsov, Elements of applied bifurcation theorey, New York: Springer Science & Business Media, 2004. https://doi.org/10.1007/978-1-4757-3978-7
    [25] H. N. Agiza, E. M. Elabbssy, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal. Real, 10 (2009), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
    [26] A. M. Yousef, S. M. Salman, A. A. Elsadany, Stability and bifurcation analysis of a delayed discrete predator-prey model, Int. J. Bifurc. Chaos., 28 (2018), 1850116. https://doi.org/10.1142/S021812741850116X doi: 10.1142/S021812741850116X
    [27] A. Q. Khan, J. Ma, D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037
    [28] A. Q. Khan, J. Ma, D. Xiao, Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect, J. Biol. Dyn., 11 (2017), 121–146. https://doi.org/10.1080/17513758.2016.1254287 doi: 10.1080/17513758.2016.1254287
    [29] E. M. Elabbasy, H. N Agiza, H. El-Metwally, A. A. Elsadany, Bifurcation analysis, chaos and control in the Burgers mapping, Int. J. Nonlinear Sci., 4 (2007), 171–185.
    [30] G. Wen, Criterion to identify hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. https://doi.org/10.1103/PhysRevE.72.026201 doi: 10.1103/PhysRevE.72.026201
    [31] S. Yao, New bifurcation critical criterion of Flip-Neimark-Sacker bifurcations for two-parameterized family of $n$-dimensional discrete systems, Discrete Dyn. Nat. Soc., 2012 (2012), 264526. https://doi.org/10.1155/2012/264526 doi: 10.1155/2012/264526
    [32] B. Xin, T. Chen, J. Ma, Neimark-Sacker bifurcation in a discrete-time financial system, Discrete Dyn. Nat. Soc., 2010 (2010), 405639. https://doi.org/10.1155/2010/405639 doi: 10.1155/2010/405639
    [33] G. Wen, S. Chen, Q. Jin, A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker, J. Sound Vib., 311 (2008), 212–223. https://doi.org/10.1016/j.jsv.2007.09.003 doi: 10.1016/j.jsv.2007.09.003
    [34] M. Pituk, More on Poincaré's and Perron's theorems for difference equations, J. Differ. Equ. Appl., 8 (2002), 201–216. https://doi.org/10.1080/10236190211954 doi: 10.1080/10236190211954
    [35] S. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5
    [36] S. Lynch, Dynamical systems with applications using mathematica, Boston: Birkhäuser, 2007. https://doi.org/10.1007/978-0-8176-4586-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(162) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog