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extended to exploring convergence rates, control strategies, and bifurcation phenomena crucial for
understanding the behavior of the HBV system. Employing linear stability theory, we meticulously
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providing insights into the system’s stability and potential transitions. Further, through the lens
of bifurcation theory, we conducted a comprehensive bifurcation analysis, unraveling the intricate
interplay of parameters that govern the HBV model’s behavior. Our investigation extended beyond
traditional stability analysis to explore chaos and convergence rates, enriching our understanding of
the dynamics of the understudied HBV model. Finally, we validated our theoretical findings through
numerical simulations, confirming the robustness and applicability of our analysis in real-world
scenarios. By integrating biological and epidemiological insights into our mathematical framework,
we offered a holistic understanding of the dynamics of HBV transmission dynamics, with implications
for public health interventions and disease control strategies.
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1. Introduction

1.1. Motivation and literature review

One of the most important health issues in the world is the Hepatitis B virus (HBV). All over the
world, about 500 million chronic infections are caused by HBV or HCV [1]. The term “hepatitis”
describes liver swelling. Alcohol, specific drugs, chemicals, or a viral infection are the main factors
that contribute to liver inflammation. The use of contaminated razors and needles, blood transfusion,
and saliva exchange can also cause infection in a susceptible person. The two main viral infections
that affect liver cells are HCV and HBV. Although HBV and HCV have similar names, they are
genetically and clinically distinct viruses. Both DNA viruses known as HBV and single strand RNA
viruses known as HCV damage the liver cells. HBV can cause a short-term infection called an acute
infection, when the virus is eradicated from the body by the immune system. Cirrhosis and
hepatocellular carcinoma are two liver diseases that are ultimately caused by a chronic infection.
Those who just have the acute disease still suffer severe symptoms, such as jaundice, high weakness,
nausea, vomiting, and stomach pain, for up to a year. It is noted here that 1% to 5% of infected people
are chronically infected; however, this percentage is significantly higher in newborns and young
children. The virus causes liver cancer in around 25% of chronic carriers. Chronic HBV infections
frequently happen in our early years, and the virus survives in the body because significant immune
responses are destroyed. Both acute and chronic infections caused by HBV have a high death rate.
The immune system works to protect the body against threats from outside particles. By eliminating
virus-infected cells, the cytotoxic T lymphocytes (CTLs) play a crucial role in antiviral defense.
Cytotoxic T lymphocytes (CTLs) are a crucial component of the immune system responsible for
recognizing and eliminating virus-infected cells and cancerous cells. They are a type of T
lymphocyte, a subset of white blood cells that play a central role in adaptive immunity. The term
“cytotoxic” refers to their ability to induce cell death, particularly in target cells marked for
destruction. CTLs are equipped with a specialized receptor known as the T-cell receptor (TCR),
which allows them to recognize specific antigens presented on the surface of infected or abnormal
cells. When a CTL encounters a target cell displaying the matching antigen, it releases cytotoxic
molecules such as perforin and granzymes, which penetrate the target cell’s membrane and induce
apoptosis, or programmed cell death. This process effectively eliminates the infected or abnormal
cell, preventing the spread of pathogens and the development of cancer. Additionally, CTLs play a
vital role in immune surveillance, continuously patrolling the body to identify and eliminate threats to
maintain overall health and immunity. Moreover, CTLs and B-cells are main parts of the immune
response. CTLs target and kill virus-infected cells, whereas B-cells create antibodies that neutralize
the viruses, referred to as antibodies for immune response. A typical immune response to a virus must
include antibodies, cytokines, natural killer cells, and T-cells [2, 3]. Further, it is important here to
mention that within-host dynamics between free-viruses, susceptible/infected cells, and immune
response refers to the interactions and changes that occur within an infected organism at the cellular
and molecular level. Here is a breakdown:

(i) Free-viruses: These are viruses that are circulating freely within the host organism. They can
infect susceptible cells and replicate, leading to the spread of infection.

(ii) Susceptible/infected cells: Cells within the host organism that are vulnerable to viral infection are
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referred to as susceptible cells. When a virus enters a susceptible cell and begins to replicate, that
cell becomes infected. The dynamics between susceptible and infected cells involve the process
of viral replication, cell damage, and potential cell death.

(iii) Immune response: When the host organism detects the presence of viruses or infected cells, the
immune system is activated. This response involves various components, including immune cells
such as T- and B-cells, as well as signaling molecules like cytokines. The immune response aims
to eliminate the virus and infected cells, thus controlling the infection.

Understanding the within-host dynamics between these components is crucial for developing
strategies to combat viral infections, such as vaccines or antiviral therapies. It involves studying how
viruses interact with host cells, evade immune detection, and how the immune system responds to
limit viral spread and clear the infection. On the other hand, in recent years, many scientists have
proposed and studied the dynamics of infectious disease models. For instance, Qesmi et al. [4]
investigated backward bifurcation analysis of continuous-time Hepatitis B and C virus mathematical
models. Li et al. [5] explored the dynamics of a Hepatitis B deterministic model. Chen and Xu [6]
explored bifurcation analysis of a viral infection model. For more intersecting results in this direction,
we refer the reader to the work done by eminent researchers [7–13]. See also [14] for the analysis
through the basic reproduction number of a general discrete-time model.

1.2. Main contribution

Our main findings in this paper include:

• Model formulation of a discrete time HBV model.
• Examination of the local behavior at equilibrium states with a basic reproduction number (BRN)

of the HBV model.
• A study of the rate of convergence of the discrete HBV model.
• Bifurcation analysis at equilibrium states.
• Examination of the chaos of the state feedback method.
• Numerical validation of theoretical results.

1.3. Paper layout

The paper is structured as follows: In Section 2, we give the model formulation of a discrete time
HBV model. In Section 3, we investigate the equilibrium states, linearized form, and BRN for a
discrete HBV model. Whereas in Section 4, we examine local stability analysis at the equilibrium states
and bifurcation sets. In Section 5, detailed bifurcation analysis at equilibrium states is investigated.
In Sections 6 and 7, we study convergence rate and chaos control, respectively, whereas theoretical
findings are numerically verified in Section 8. The paper’s conclusion with future work is presented in
Section 9.

2. Model formulation

Motivated from the aforementioned studies, in this paper, we explore dynamical characteristics of
a discrete Hepatitis B virus mathematical model. For this, we first reformulate the mathematical
formulation of a continuous-time HBV model based on Figure 1, where z, v, s, and I, respectively,
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denote the size of the CTL response or the quantity of virus-specific CTLs, free virus particles,
uninfected cells, and infected cells. Furthermore, it is worthwhile to mention that the investigation
consists of the simple dynamics of virus-host cell interaction and the kinetic interaction of CTLs with
infected cells, as well as the impact of immune responses on viral burden and antigenic diversity.
Viral organisms rely on their host cell for both survival and reproduction. Based on the amount of
virus present, the tissues affected, and the length of the infection, the antiviral immune response’s
beneficial and harmful effects must be balanced. The virus is the immune system’s reaction to the
infection and may directly destroy the host cell. At the rate βsv, the cells s are infected by the v,
where the constant rate β represents the efficiency of this process, including the rate of successful
infection and probability. The cells I produce v at the rate kI, whereas the cells I die at a rate αI. v is
eradicated from the system at the rate uv, whereas α, δ, and u denote death rates of cells I, s, and free
virus v, respectively. Further, 1

u and 1
α

are the average life times of v and I, respectively. ϑ and δs are
the constant rates at which cells s are produced and then die, respectively, while k

α
is the amount of

virus produced from the I. The CTLs proliferation rate in response to antigens is represented by cIz.
CTLs decrease at a rate of bz in the absence of stimulus. CTLs kill I at a rate of pIz. The CTLs
responsiveness is indicated by the parameter c. The parameter p determines how quickly CTLs
eliminate I. Based on these presumptions, the continuous-time HBV mathematical model designated
by a system of differential equations takes the following form [15]:
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Figure 1. Flow chart of a model for virus replication.
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
ṡ = ϑ − δs − βsv,

İ = βsv − αI − pIz,

v̇ = kI − uv,

ż = cIz − µz.

(2.1)

In the context of populations with non-overlapping generations, discrete-time models governed by
maps are preferable to continuous ones. Discrete models can also produce effective computational
results for numerical simulations. For instance, after discretization by the Euler-forward formula,
HBV model (2.1) takes the following form:

st+1−st
h = ϑ − δst − βstvt,

It+1−It
h = βstvt − αIt − pItzt,

vt+1−vt
h = kIt − uvt,

zt+1−zt
h = cItzt − µzt.

(2.2)

After simplification, the required discrete HBV model (2.2) takes the form:
st+1 = hϑ + (1 − hδ)st − βhstvt,

It+1 = (1 − αh)It + hβstvt − phItzt,

vt+1 = (1 − hu)vt + hkIt,

zt+1 = (1 − hµ)zt + hcItzt,

(2.3)

where h > 0 denotes the integral step size such that the quantities 1 − hδ, 1 − αh, 1 − hu, and 1 − hµ
are positive and this statement underscores a crucial aspect of discretizing continuous models: the
choice of step size h and its impact on the validity of numerical solutions. Discretization involves
approximating continuous systems into a finite set of points or intervals, a fundamental process in
numerical simulations and computational methods. However, the discretization scheme must be
carefully chosen to ensure the stability and accuracy of the numerical solution. The necessity for a
small step size h > 0 arises from the preservation of certain properties of the continuous model during
discretization. Specifically, the quantities 1 − hδ, 1 − αh, 1 − hu, and 1 − hµ, which likely represent
rates or constants in the model equations, must remain positive. This condition ensures that the
numerical solution accurately reflects the behavior of the system without introducing instability or
negative values. Choosing an appropriate step size is crucial because it directly impacts the fidelity of
the numerical solution. A small enough step size ensures that the discretization accurately
captures the dynamics of the system over time. If the step size is too large, it may lead to numerical
instability or inaccuracies in the solution, compromising the reliability of the results. Moreover, the
statement highlights the non-uniqueness of discretization schemes. Different discretization methods
can yield varying results and behaviors of the numerical solution. Some schemes may be
more suitable than others for preserving stability and positivity, depending on the specific
characteristics of the model equations and the system being studied. In summary, ensuring that the
quantities 1 − hδ, 1 − αh, 1 − hu, and 1 − hµ remain positive for small enough step sizes h > 0 is
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essential for maintaining the stability and validity of numerical solutions obtained through the
discretization of continuous models. The choice of the discretization scheme and step size play a
crucial role in accurately representing the dynamics of the system and obtaining reliable results in
numerical simulations and computational analysis.

3. Linearized form, equilibrium states, and BRN

We will explore equilibrium states of a discrete HBV model (2.3), linearized form, and BRN in this
section.

Lemma 3.1. For the HBV model’s equilibrium states, the following statements hold:

(i) For all ϑ, δ, β, α, p, k, u, c, µ, h, discrete HBV model (2.3) has disease-free equilibrium state
(DFES) Φ1 =

(
ϑ
δ
, 0, 0, 0

)
;

(ii) Discrete HBV model (2.3) has boundary equilibrium state (ES) Φ2 =
(

uα
kβ ,
ϑβk−δuα
αkβ ,

ϑβk−δuα
αuβ , 0

)
if

β > αuδ
ϑk . Moreover, biologically, ES represents the state where the pathogens are present while

CTLs are absents;
(iii) If β > cαuδ

cϑk−kµα then the discrete HBV model (2.3) has an epidemic equilibrium state (EES) Φ3 =(
cuϑ

cδu+βkµ ,
µ

c ,
kµ
cu ,

ckβϑ−cδuα−kαβµ
p(cδu+kβµ)

)
.

Proof. If HBV model (2.3) has an equilibrium state Φ = (s, I, v, z), then
s = hϑ + (1 − hδ)s − βhsv,

I = (1 − αh)I + hβsv − phIz,

v = (1 − hu)v + hkI,

z = (1 − hµ)z + hcIz.

(3.1)

It is noted that algebraic system (3.1) is satisfied obviously if Φ = (s, I, v, z) =
(
ϑ
δ
, 0, 0, 0

)
, and so the

HBV model (2.3) has a disease-free equilibrium state (DFES)Φ1 =
(
ϑ
δ
, 0, 0, 0

)
for all model parameters

ϑ, δ, β, α, p, k, u, c, µ, and h. Now, in order to find equilibrium state Φ2, we will solve the following
system simultaneously:

ϑ − δs − βsv = 0, βsv − αI − pIz = 0, kI − uv = 0, cIz − µz = 0. (3.2)

From the last equation of (3.2), we get
z = 0. (3.3)

On utilizing (3.3) into the second equation of system (3.2), we get

βsv − αI = 0. (3.4)

Now, on solving the third equation of (3.2) and (3.4) simultaneously, one gets

s =
uα
kβ
. (3.5)
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Using (3.5) into the first equation of system (3.2), we get

v =
ϑβk − δuα
αuβ

. (3.6)

From the third equation of system (3.2) and (3.6), we get

I =
ϑβk − δuα
αkβ

. (3.7)

Equations (3.3) and (3.5)–(3.7) imply that the HBV model (2.3) has ES Φ2 =
(

uα
kβ ,
ϑβk−δuα
αkβ ,

ϑβk−δuα
αuβ , 0

)
if

β > αuδ
ϑk . More importantly, it is noted here that if β > αuδ

ϑk , that is, βϑk
αuδ > 1, then the HBV model (2.3)

has ES Φ2 =
(

uα
kβ ,
ϑβk−δuα
αkβ ,

ϑβk−δuα
αuβ , 0

)
, and so we define R0 =: βϑk

αuδ > 1 as a BRN of the virus, which
indicates the typical number of newly infected cells produced from one infected cell at the start of
the infectious process [16]. On the other hand, we can say that the HBV model (2.3) has ES Φ2 =(

uα
kβ ,
ϑβk−δuα
αkβ ,

ϑβk−δuα
αuβ , 0

)
if R0 > 1. Finally, for EES in R4

+, one needs to solve following algebraic
system (3.2). From the last equation of (3.2), we get

I =
µ

c
. (3.8)

By utilizing (3.8) in the third equation of system (3.2), we get

v =
kµ
cu
. (3.9)

Using (3.8) and (3.9) in the first equation of system (3.2), we get

s =
cuϑ

cδu + βkµ
. (3.10)

Using (3.8)–(3.10) in the second equation of system (3.2), we get

z =
ckβϑ − cδuα − kαβµ

p(cδu + kβµ)
. (3.11)

Equations (3.8)–(3.11) imply that if β > αcuδ
cϑk−kαµ , then the HBV model (2.3) has EES

Φ3 =
(

cuϑ
cδu+βkµ ,

µ

c ,
kµ
cu ,

ckβϑ−cδuα−kαβµ
p(cδu+kβµ)

)
. □

Now a linearized form for the HBV model (2.3) at equilibrium state Φ is formulated. So, under the
map (e, f , g, h) 7→ (st+1, It+1, vt+1, zt+1), one has the following variational matrix J|Φ, which is evaluated
at equilibrium state Φ:

J|Φ :=


1 − h (δ + βv) 0 −hβs 0

hβv 1 − αh − hpz hβs −hpI
0 kh 1 − hu 0
0 hcz 0 1 + h(cI − µ)

 , (3.12)

where 
e = s + h(ϑ − δs − βsv),
f = I + h(βsv − pIz − αI),
g = v + h(kI − uv),
h = z + h(cIz − µz).

(3.13)
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Remark 3.1. It is important here to explain that the continuous-time model, which is depicted in (2.1),
can be modified by reconsidering the following key aspects and assumptions:

(1) The proportionality of k to the burst size: Parameter k is proportional to the burst size, which is
the number of virion released from an infected cell upon lysis. This indicates that k represents the
rate of virion production per infected cell.

(2) Adsorption rate β: The parameter β denotes the rate at which viruses attach to and infect
susceptible cells.

(3) Free viruses’ lifetime and loss: In the original model, the free viruses v do not account for losses
due to adsorption by uninfected cells. In biological terms, when a virus particle adsorbs to a
susceptible cell and successfully infects it, the virus is effectively removed from the pool of free
viruses. To incorporate this loss, the equation for free viruses should include a term that represents
the reduction of free viruses due to adsorption by the susceptible cells. The modified equation
would be:

v̇ = kI − (u + βs)v, (3.14)

where βsv represents the rate at which viruses are lost due to successful infection of susceptible
cells.

Based on the key aspects and assumptions, which are explained above, the modified version of the
continuous-time model (2.1) now becomes the following:

ṡ = ϑ − δs − βsv,

İ = βsv − αI − pIz,

v̇ = kI − (u + βs)v,
ż = cIz − µz.

(3.15)

Additionally, basic reproduction number, R0, in the context of within-host viral dynamics, is
commonly interpreted as the average number of new infections caused by a single infected cell in a
fully susceptible population. However, given that free viruses are the primary infecting agents, a more
appropriate interpretation of R0 would be “the expected number of virion produced by each virus
during its lifetime”. This considers the entire cycle from infection to the release of new virion and
their subsequent interactions with susceptible cells. In conclusion, incorporating the loss of viruses
due to adsorption by susceptible cells provides a more accurate representation of the within-host viral
dynamics. This adjustment ensures a more biologically realistic and mathematically consistent
framework for understanding the dynamics of viral infections within a host.

4. Local stability analysis at equilibrium states and bifurcation sets

Here, we will study the local behavior along with the identification of bifurcation sets of the HBV
model (2.3) at the equilibrium states using existing theory [17–23]. For DFES, (3.12) becomes

J|DFES :=


1 − hδ 0 −

hβϑ
δ

0
0 1 − αh hβϑ

δ
0

0 kh 1 − hu 0
0 0 0 1 − hµ

 , (4.1)
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with

λ1 = 1 − δh, λ2 = 1 − hµ, and λ3,4 =
1
2

2 − αh − hu ±
h
√
δ (u − α)2 + 4kβϑ

√
δ

 . (4.2)

Now, at DFES, we give the local behavior as follows:

Theorem 4.1. DFES of the HBV model (2.3) is

(i) a locally asymptotically stable if

0 < δ <
2
h
, 0 < µ <

2
h
, and

4 − 2αh − 2hu + αuh2

αuh2 < R0 < 1; (4.3)

(ii) an unstable if

δ >
2
h
, µ >

2
h
, and 1 < R0 <

4 − 2αh − 2hu + αuh2

αuh2 ; (4.4)

(iii) a saddle if

0 < δ <
2
h
, 1 < R0 <

4 − 2αh − 2hu + αuh2

αuh2 , and µ >
2
h
, (4.5)

or

δ >
2
h
, 1 < R0 <

4 − 2αh − 2hu + αuh2

αuh2 , and 0 < µ <
2
h
, (4.6)

or

δ >
2
h
,

4 − 2αh − 2hu + αuh2

αuh2 < R0 < 1, and 0 < µ <
2
h
, (4.7)

or

0 < δ <
2
h
,

4 − 2αh − 2hu + αuh2

αuh2 < R0 < 1, and µ >
2
h
, (4.8)

or

δ >
2
h
,

4 − 2αh − 2hu + αuh2

αuh2 < R0 < 1, and µ >
2
h
, (4.9)

or

0 < δ <
2
h
, 1 < R0 <

4 − 2αh − 2hu + αuh2

αuh2 , and 0 < µ <
2
h

; (4.10)

(iv) non-hyperbolic if

δ =
2
h
, (4.11)

or
µ =

2
h
, (4.12)

or
R0 = 1, (4.13)

or

R0 =
4 − 2αh − 2hu + αuh2

αuh2 ; (4.14)
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where in original parameters (4.13) and (4.14), respectively, it will be shown in the following
form:

δ =
kβϑ
αu
, (4.15)

and

δ =
kβϑh2

4 − 2hu − 2αh + αh2u
. (4.16)

Proof. DFES of the HBV model (2.3) is asymptotically stable if |λ1| = |1 − δh| < 1, |λ2| = |1 −

hµ| < 1, and |λ3,4| =

∣∣∣∣∣∣1
2

(
2 − αh − hu ± h

√
δ(u−α)2+4kβϑ
√
δ

)∣∣∣∣∣∣ < 1, that is, 0 < δ < 2
h , 0 < µ < 2

h , and

4−2αh−2hu+αuh2

αuh2 < R0 < 1. Therefore, DFES is asymptotically stable if 0 < δ < 2
h , 0 < µ < 2

h , and
4−2αh−2hu+αuh2

αuh2 < R0 < 1. A similar calculation shows that DFES of the HBV model (2.3) is unstable if
δ > 2

h , µ > 2
h , and 1 < R0 <

4−2αh−2hu+βuh2

αuh2 , a saddle if 0 < δ < 2
h , µ > 2

h , and 1 < R0 <
4−2αh−2hu+αuh2

αuh2

or δ > 2
h , 0 < µ < 2

h , and 1 < R0 <
4−2αh−2hu+αuh2

αuh2 or δ > 2
h , 0 < µ < 2

h , and 4−2αh−2hu+αuh2

αuh2 < R0 < 1
or 0 < δ < 2

h , µ > 2
h , and 4−2αh−2hu+αuh2

αuh2 < R0 < 1 or δ > 2
h , µ > 2

h , and 4−2αh−2hu+αuh2

αuh2 < R0 < 1
or 0 < δ < 2

h , 0 < µ < 2
h , and 1 < R0 <

4−2αh−2hu+αuh2

αuh2 , and finally, non-hyperbolic if δ = 2
h or δ = 2

h or
R0 = 1 or R0 =

4−2αh−2hu+αuh2

αuh2 . □

Hereafter, based on Theorem 4.1, we will discuss the existence of possible bifurcation sets. It is
noted that if parameters χ = (ϑ, δ, β, α, p, k, u, c, µ, h) pass certain regions, then a number of possible
bifurcation sets may occur, which are summarized as a following theorem:

Theorem 4.2. We have the following bifurcation sets if parameter χ = (ϑ, δ, β, α, p, k, u, c, µ, h) passes
certain regions:

(i) If (4.11) holds, then λ1|(4.11) = −1 but λ3,4|(4.11) =
2−hα−hu±

√
h2((u−α)2+2hkβϑ)

2 , 1 or − 1, as well as
λ2|(4.11) = 1 − hµ , 1 or − 1. So, for DFES, one has the following flip bifurcation set associated
with Theorem 4.1:

Γ3|DFES =

{
χ : δ =

2
h

}
; (4.17)

(ii) If (4.12) holds, then λ2|(4.12) = −1 but λ3,4|(4.12) =
1
2

(
2 − αh − hu ± h

√
δ(u−α)2+4kβϑ
√
δ

)
, 1 or − 1, as

well as λ1|(4.12) = 1 − hd , 1 or − 1. So, for DFES, one has the following flip bifurcation set
associated with Theorem 4.1:

Γ4|DFES =

{
χ : µ =

2
h

}
; (4.18)

(iii) If (4.15) holds, then λ3|(4.15) = 1 but λ1,4|(4.15) = 1 − h
(

kβϑ
αu

)
, 1 − h (α + u) , 1 or − 1, as well as

λ2|(4.15) = 1 − hµ , 1 or − 1. So, for DFES, one has the following fold bifurcation set associated
with Theorem 4.1:

Γ5|DFES =

{
χ : δ =

kβϑ
αu

}
; (4.19)

(iv) If (4.16) holds, then λ4|(4.16) = −1 but λ1,3|(4.16) = 1 − h
(

kβϑh2

4−2hu−2αh+αh2u

)
, 3 − h (u + α) , 1 or − 1,

as well as λ2|(4.16) = 1 − hµ , 1 or − 1. So, for DFES, one has the following flip bifurcation set
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associated with Theorem 4.1:

Γ6|DFES =

{
χ : δ =

kβϑh2

4 − 2hu − 2αh + αh2u

}
. (4.20)

Hereafter, we will study the local behavior at ES and EES of the HBV model (2.3) by Theorem 1.4
of [18]. At ES, (3.12) gives

J|ES :=


αu−hϑβk
αu 0 −hαu

k 0
hϑβk−αuhδ
αu 1 − αh hαu

k
hpδuα−hpϑβk

αkβ

0 kh 1 − hu 0
0 0 0 1 − hµ + hcϑβk−αhcuδ

kαβ

 , (4.21)

with
P(λ) = λ4 + S1λ

3 + S2λ
2 + S3λ + S4 = 0, (4.22)

where 

S1 = −4 + h
(
u + cδu

kβ + α + µ
)
+

h2ϑ(kβ−cu)
kuα ,

S2 =


ch(δuα − hβϑ)

(
uα(−3 + h(u + α)) + h2βϑ

)
+ kαβ(h2uα(−3 + hµ)

+ u
(
6α − 3hα2 + h3βϑ + hα(−3 + hα)µ

)
+ h2βϑ(−3 + h(α + µ))


kuβα2 ,

S3 =


−ch(hβϑ − δuα)

(
uα(3 − 2h(u + α)) + h2βϑ(−2 + h(u + α))

)
+

kαβ(−h2uα(−3 + δh2α + 2hµ) + h2βϑ(3 + h2αµ − 2h(α + µ))+
u(hα2(3 − 2µh) + h3βϑ(hµ − 2) + α(−4 + h4βϑ + 3hµ))


kuα2β

,

S4 = −
(uα(1+δh3uα−h(u+α))−h2βϑ(hu−1)(hα−1))(ch(δuα−hβϑ)+kβα(hµ−1))

kuβα2 .

(4.23)

Theorem 4.3. If
|S1 + S3| < 1 + S2 + S4,

|S3 − S1| < 2(1 − S4),
S2 − 3S4 < 3,
S2 + S

2
4(1 + S2) + S2

3 + S4(1 + S2
1) < 1 + 2S2S4 + S1S3(1 + S4) + S3

4,

(4.24)

then the ES of the HBV model (2.3) is a sink where Si(i = 1, 2, 3, 4) are depicted in (4.23).

Finally, at EES, (3.12) gives

J|EES :=


1 − hδ − hβkµ

cu 0 −
hβcϑu

cdu+kβµ 0
hβkµ

cu 1 − αh − h
(

ckβϑ−cδuα−kαβµ
cδu+kβµ

)
hβcϑu

cdu+kβµ −
hpµ

c

0 kh 1 − hu 0
0 c2hkβϑ−c2δhuα−kβµαhc

p(cδu+kβµ) 0 1

 , (4.25)

with
P(λ) = λ4 +U1λ

3 +U2λ
2 +U3λ +U4 = 0, (4.26)
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where

U1 = −4 + h
(
δ + u + kβµ

cu +
ckβϑ

cδu+kβµ

)
,

U2 = 6 + h(−3u + δ(−3 + hu) + hϑ(c + kβ
u ) − hαµ + kβµ(−3+hu)

cu −
cϑ(cδhu+3kβ)

cδu+kβµ ,

U3 =



c2u(δu(−4 + 3hu + δh(3 − 2hu)) + h(3 − 2δh)kβϑ) + c(−ch2u(−2 + h(δ
+u))(δuα − kβϑ) + kβ(u(−4 + 3hu + 2δh(3 − 2hu)) + h2k(−2 + hu)
βϑ))µ + hkβ2(k(3 − 2hu) + ch(−u(−2 + 2δh + hu)α + hkβϑ))µ2

− h3k2αβ2µ3


cu(cδu+kβµ) ,

U4 = −


hk2(hu − 1)β2µ2(h2αµ − 1) + ck(−1 + hu)βµ(h2kβϑ(1 − hµ) + (2δh − 1)

u(h2αµ − 1)) + c2(δh − 1)u(hkβϑ(−1 + h(1 − hu)µ) + du(hµ − 1)(h2

αµ − 1)))


cu(cδu+kβµ) .

(4.27)

Theorem 4.4. If
|U1 +U3| < 1 +U2 +U4,

|U3 −U1| < 2(1 −U4),
U2 − 3U4 < 3,
U2 +U

2
4(1 +U2) +U2

3 +U4(1 +U2
1) < 1 + 2U2U4 +U1U3(1 +U4) +U3

4 ,

(4.28)

then the EES of the HBV model (2.3) is a sink whereUi(i = 1, 2, 3, 4) are depicted in (4.27).

It is noted that by explicit criterion, we explore the existence of bifurcation at the ES and EES of
HBV model (2.3).

5. Bifurcation analysis

We will examine bifurcations at DFES, ES, and EES of the HBV model (2.3) in this section by
bifurcation theory [23–29].

Theorem 5.1. At DFES, the HBV model (2.3) does not undergo flip bifurcation if (4.17) holds.

Proof. For DFES, HBV model (2.3) is invariant subject to I = v = z = 0. Therefore, the HBV
model (2.3) restricted to I = v = z = 0 becomes

st+1 = st + h(ϑ − δst). (5.1)

From (5.1), we define
f (s) := s + hϑ − hδs. (5.2)

Since δ = δ∗ = 2
h , s = s∗ = ϑ

δ
, and therefore, from (5.2), one has that fs|δ=δ∗= 2

h , s=s∗= ϑδ
= −1 and

fδ|δ=δ∗= 2
h , s=s∗= ϑδ

= −h2ϑ
2 , 0 hold but fss|δ=δ∗= 2

h , s=s∗= ϑδ
= 0 violates the non-degenerate condition for the

occurrence of flip bifurcation at DFES of HBV model (2.3). □

Theorem 5.2. At DFES, HBV model (2.3) does not undergo flip, flip, and fold bifurcations if (4.18)–
(4.20) hold, respectively.
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Proof. This is the same as the proof of Theorem 5.1. □

Hereafter, bifurcation analysis at ES and EES of the HBV model (2.3) is investigated by
implementing explicit criterion [30–33].

Theorem 5.3. At ES, the discrete HBV model (2.3) undergoes flip bifurcation if

1 − S4 − S2 − S
2
3 + S

3
4 − S

2
4 (1 + S2) + 2S2S4 − S

2
1S4 + S1S3 (1 + S4) > 0,

1 + S2 + S4 − S
2
3 − S

3
4 − S

2
4 (1 + S2) + S2

1S4 − S1S3 (1 − S4) > 0,
1 + S1 + S2 + S3 + S4 > 0,
1 − S1 + S2 − S3 + S4 = 0,
1 ± S4 > 0,
S
′

1−S
′

2+S
′

3−S
′

4
4−3S1+2S2−S3

, 0,

(5.3)

where h0 is a real roots of 1 − S1(h) + S2(h) − S3(h) + S4(h) = 0.

Proof. For n = 4, the explicit criterion yields

∆−3 (h) =1 − S4 − S2 − S
2
3 + S

3
4 − S

2
4 (1 + S2) + 2S2S4 − S

2
1S4 + S1S3 (1 + S4) > 0,

∆+3 (h) =1 + S2 + S4 − S
2
3 − S

3
4 − S

2
4 (1 + S2) + S2

1S4 − S1S3 (1 − S4) > 0,
Ph(1) =1 + S1 + S2 + S3 + S4 > 0,

Ph(−1) =1 − S1 + S2 − S3 + S4 = 0,
∆±1 (h) =1 ± S4 > 0,

(5.4)

and
n∑

i=1

(−1)n−iS
′

i

n∑
i=1

(−1)n−i(n − i + 1)Si−1

=
S
′

1 − S
′

2 + S
′

3 − S
′

4

4 − 3S1 + 2S2 − S3
, 0. (5.5)

□

Theorem 5.4. At EES, the discrete HBV model (2.3) undergoes N-S bifurcation if

1 −U4 −U2 −U
2
3 +U

3
4 −U

2
4 (1 +U2) + 2U2U4 −U

2
1U4 +U1U3 (1 +U4) = 0,

1 +U2 +U4 −U
2
3 −U

3
4 −U

2
4 (1 +U2) +U2

1U4 −U1U3 (1 −U4) > 0,
1 +U1 +U2 +U3 +U4 > 0,
1 −U1 +U2 −U3 +U4 > 0,
1 ±U4 > 0,
d

dh

(
1 −U4 −U2 −U

2
3 +U

3
4 −U

2
4 (1 +U2) + 2U2U4 −U

2
1U4 +U1U3 (1 +U4)

)
|h=h0 , 0,

cos 2π
l , 1 − (1−U4)(1+U1+U2+U3+U4)

2(1+U3−U4(U1+U4))) , l = 3, 4, · · · ,

(5.6)

where h0 is a real root of 1 − U4(h) − U2(h) − U2
3(h) +U3

4(h) − U2
4(h) (1 +U2(h)) + 2U2(h)U4(h) −

U2
1(h)U4(h) +U1(h)U3(h) (1 +U4(h)) = 0.
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Proof. For n = 4, the explicit criterion yields

∆−3 (h) =1 −U4 −U2 −U
2
3 +U

3
4 −U

2
4 (1 +U2) + 2U2U4−

U2
1U4 +U1U3 (1 +U4) = 0,

∆+3 (h) =1 +U2 +U4 −U
2
3 −U

3
4 −U

2
4 (1 +U2) +U2

1U4 −U1U3 (1 −U4) > 0,
Ph(1) =1 +U1 +U2 +U3 +U4 > 0,

(−1)4Pr(−1) =1 −U1 +U2 −U3 +U4 > 0,
d

dh
(
∆−3 (h)

)
|h=h0 =

d
dh

(
1 −U4 −U2 −U

2
3 +U

3
4 −U

2
4 (1 +U2) + 2U2U4 −U

2
1U4+

U1U3 (1 +U4)
)
|h=h0 , 0,

(5.7)

and

1 − 0.5Ph(1)
∆−0 (h)
∆+1 (h)

= 1 −
(1 −U4)(1 +U1 +U2 +U3 +U4)

2(1 +U3 −U4(U1 +U4)))
. (5.8)

□

Theorem 5.5. At EES, the discrete HBV model (2.3) undergoes flip bifurcation if

1 −U4 −U2 −U
2
3 +U

3
4 −U

2
4 (1 +U2) + 2U2U4 −U

2
1U4 +U1U3 (1 +U4) > 0,

1 +U2 +U4 −U
2
3 −U

3
4 −U

2
4 (1 +U2) +U2

1U4 −U1U3 (1 −U4) > 0,
1 +U1 +U2 +U3 +U4 > 0,
1 −U1 +U2 −U3 +U4 = 0,
1 ±U4 > 0,
U
′

1−U
′

2+U
′

3−U
′

4
4−3U1+2U2−U3

, 0,

(5.9)

where h0 is a real root of 1 −U1(h) +U2(h) −U3(h) +U4(h) = 0.

Proof. This is the same as the proof of Theorem 5.3. □

Remark 5.1. The existence of Neimark-Sacker and flip bifurcations in the context of the epidemic
equilibrium state within a discrete Hepatitis B virus (HBV) model carries significant biological and
epidemiological implications:

(1) A Neimark-Sacker bifurcation typically results in the emergence of stable periodic orbits from an
epidemic equilibrium state. In the context of an HBV model, the presence of a Neimark-Sacker
bifurcation could indicate the onset of sustained oscillations in the prevalence of the virus within
the population. These oscillations may signify periodic fluctuations in the number of infected
individuals over time. Biologically, this could reflect cyclical patterns in disease transmission,
possibly influenced by seasonal factors or periodic changes in host immunity. Epidemiologically,
the appearance of stable periodic orbits could have implications for the design and timing of
control measures, as interventions may need to be adapted to account for the cyclical nature of
Hepatitis B virus transmission.
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(2) A flip bifurcation typically occurs when a stable equilibrium point undergoes a sudden change
in stability, leading to the emergence of a stable limit cycle or chaotic behavior. In the context
of a Hepatitis B virus model, a flip bifurcation at the epidemic equilibrium state could indicate a
critical transition in disease dynamics. This transition may manifest as a sudden shift from stable
disease control to sustained endemicity or periodic outbreaks. Biologically, the flip bifurcation
could signify a threshold effect, where small changes in key parameters lead to qualitative changes
in disease behavior. Epidemiologically, this transition could have profound implications for public
health strategies, necessitating a reassessment of control measures and surveillance efforts to
effectively manage the evolving dynamics of Hepatitis B virus transmission.

Overall, the presence of Neimark-Sacker and flip bifurcations in a discrete Hepatitis B virus model
underscores the complex and nonlinear nature of Hepatitis B virus transmission dynamics.
Understanding these bifurcations provides valuable insights into the potential for oscillatory behavior,
critical transitions, and the effectiveness of control strategies, ultimately informing decision-making
processes aimed at mitigating the burden of Hepatitis B virus infection on public health.

6. Convergence rate of HBV model (2.3)

We will study the convergence rate of the HBV model (2.3) in this section as follows:

Theorem 6.1. If the positive solution of (2.3) is {(st, It, vt, zt)}∞t=0 such that lim
t→∞
{(st, It, vt, zt)} = Φ then

ϖt =


ϖ1

t

ϖ2
t

ϖ3
t

ϖ4
t

 , (6.1)

satisfying 
lim
t→∞

t
√
||ϖt|| =

∣∣∣λ1,2,3,4J|Φ
∣∣∣ ,

lim
t→∞

||ϖt+1||

||ϖt||
=

∣∣∣λ1,2,3,4J|Φ
∣∣∣ . (6.2)

Proof. If the HBV model (2.3) has a positive solution {(st, It, vt, zt)}∞t=0 such that lim
t→∞
{(st, It, vt, zt)} = Φ

then 
st+1 − s = (1 − hδ − hβvt) (st − s) − hβst(vt − v),
It+1 − I =hβvt(st − s) + (1 − αh − hpzt)(It − I) + hβst(vt − v) − hpIt(zt − z),
vt+1 − v =kh(It − I) + (1 − hu)(vt − v),
zt+1 − z =hczt(It − I) + (1 − hµ + hcIt)(zt − z),

(6.3)

on setting 
ϖ1

t =st − s,

ϖ2
t =It − I,

ϖ3
t =vt − v,

ϖ4
t =zt − z.

(6.4)
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From (6.3) and (6.4), one has


ϖ1

t+1 = π11ϖ
1
t + π13ϖ

3
t ,

ϖ2
t+1 = π21ϖ

1
t + π22ϖ

2
t + π23ϖ

3
t + π24ϖ

4
t ,

ϖ3
t+1 = π32ϖ

2
t + π33ϖ

3
t ,

ϖ4
t+1 = π42ϖ

2
t + π44ϖ

4
t ,

(6.5)

where



π11 = 1 − hδ − hβvt,

π13 = −hβst,

π21 = hβvt,

π22 = 1 − αh − hpzt,

π23 = hβst,

π24 = −hpIt,

π32 = kh,

π33 = 1 − hu,

π42 = hczt,

π44 = 1 − hµ + hcIt.

(6.6)

From (6.6), one has



lim
t→∞
π11 = 1 − hδ − hβv,

lim
t→∞
π13 = −hβs,

lim
t→∞
π21 = hβv,

lim
t→∞
π22 = 1 − αh − hpz,

lim
t→∞
π23 = hβs,

lim
t→∞
π24 = −hpI,

lim
t→∞
π32 = kh,

lim
t→∞
π33 = 1 − hu,

lim
t→∞
π42 = chz,

lim
t→∞
π44 = 1 − hµ + hcI,

(6.7)
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that is

π11 = 1 − hδ − hβv + η11,

π13 = −hβs + η13,

π21 = hβv + η21,

π22 = 1 − αh − hpz + η22,

π23 = hβs + η23,

π24 = −hpI + η24,

π32 = kh + η32,

π33 = 1 − hu + η33,

π42 = chz + η42,

π44 = 1 − hµ + hcI + η44,

(6.8)

where η11, η13, η21, η22, η23, η24, η32, η33, η42, η44 → 0 as t → ∞. From existing literature (see [34]), we
have an error system

ϖt+1 = (A + Bt)ϖt, (6.9)

where A = J|Φ and Bt =


η11 0 η13 0
η21 η22 η23 η24

0 η32 η33 0
0 η42 0 η44

. So, the error system becomes


ϖ1

t+1
ϖ2

t+1
ϖ3

t+1
ϖ4

t+1

 =


1 − h (δ + βv) 0 −hβs 0
hβv 1 − αh − hpz hβs −hpI
0 kh 1 − hu 0
0 hcz 0 1 + h(cI − µ)



ϖ1

t

ϖ2
t

ϖ3
t

ϖ4
t

 , (6.10)

which is the same as a linearized system of discrete HBV model (2.3) at Φ. In particular, (6.10) gives
ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

ϖ4
t+1

 =


1 − hδ 0 −
hβϑ
δ

0
0 1 − αh hβϑ

δ
0

0 kh 1 − hu 0
0 0 0 1 − hµ



ϖ1

t

ϖ2
t

ϖ3
t

ϖ4
t

 , (6.11)


ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

ϖ4
t+1

 =

αu−hϑβk
αu 0 − hαu

k 0
hϑβk−αuhδ
αu 1 − αh hαu

k
hpδuα−hpϑβk

αkβ

0 kh 1 − hu 0
0 0 0 1 − hµ + hcϑβk−αhcuδ

kαβ




ϖ1

t

ϖ2
t

ϖ3
t

ϖ4
t

 , (6.12)

and 
ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

ϖ4
t+1

 =


1 − hδ − hβkµ
cu 0 −

hβcϑu
cdu+kβµ 0

hβkµ
cu 1 − αh − h

(
ckβϑ−cduα−kαβµ

cδu+kβµ

)
hβcϑu

cdu+kβµ −
hpµ

c

0 kh 1 − hu 0

0 c2hkβϑ−c2δhuα−kβµαhc
p(cδu+kβµ) 0 1




ϖ1

t

ϖ2
t

ϖ3
t

ϖ4
t

 , (6.13)

which are similar to the linearized system of the discrete HBV model (2.3) obtained at DFES, ES, and
EES, respectively. □
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7. Chaos control

In this section, the chaos control is studied by the feedback control strategy for the discrete HBV
model (2.3) about EES by existing theory [35, 36]. By utilizing feedback control strategy, the discrete
HBV model (2.3) takes the form


st+1 = hϑ − (1 + hδ)st − βhstvt + ϱ(st − s),
It+1 = (1 − αh)It + hβstvt − phvtzt + ϱ(It − I),
vt+1 = (1 − hu)vt + hkIt + ϱ(vt − v),
zt+1 = (1 − hµ)zt + hcItzt + ϱ(zt − z),

(7.1)

where the control parameter is ϱ. The J|EES of the discrete HBV model (7.1) is

J|EES =


1 − h (δ + βv) + ϱ 0 −hβs 0

hβv 1 − αh − hpz + ϱ hβs −hpI
0 kh 1 − hu + ϱ 0
0 hcz 0 1 + h(cI − µ) + ϱ.

 , (7.2)

with

P(λ) = λ4 +U∗1λ
3 +U∗2λ

2 +U∗3λ +U
∗
4, (7.3)

where 

U∗1 =
hk2β2µ2+c2u(δ2hu+hkβϑ+δu(−4+hu−4ϱ))+ckuβµ(−4+2δh+hu−4ϱ)

cu(cδu+kβµ) ,

U∗2 =



hk2β2µ2(hu − 3(1 + ϱ)) + ckβµ(h2kβϑ + hu2(2δh − 3(1 + ϱ))
+u(−h2αµ − 6δh(1 + ϱ) + 6(1 + ϱ)2)) + c2u(δ2hu(hu − 3(1 + ϱ))
+hkβϑ(hµ − 3(1 + ϱ)) + δ(h2kβϑ − 3hu2(1 + ϱ) + u(−h2αµ

+ 6(1 + ϱ)2))))


cu(cδu+kβµ) ,

U∗3 =



hk2β2µ2(−1 + hu − ϱ)(h2αµ − (1 + ϱ)2) + ckβµ(−1 + hu − ϱ)(h2kβϑ
(−1 + hµ − ϱ) + u(−1 + 2dh − ϱ)(h2αµ − (1 + ϱ)2)) + c2u(−1 + δh

−ϱ)(δu(−1 + hu − ϱ)(h2αµ − (1 + ϱ))2) − hkβϑ(h2uµ − hµ(1
+ ϱ) + (1 + ϱ)2)))


cu(cδu+kβµ) ,

U∗4 =



hk2β2µ2(−1hu − ϱ)(h2αµ − (1 + ϱ)2) + ckβµ(−1 + hu − ϱ)(h2k
βϑ(1 − hµ + ϱ) + u(−1 + 2δh − ϱ)(h2αµ − (1 + ϱ)2)) + c2u(−1+

δh − ϱ)(δu(−1 + hu − ϱ)(h2αµ − (1 + ϱ)2) − hkβϑ(h2uµ−
hµ(1 + ϱ) + (1 + ϱ)2))


cu(cδu+kβµ) .

(7.4)

So the dynamics of (7.1) can be concluded as follows:
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Theorem 7.1. EES is a sink if

∣∣∣U∗1 +U∗3∣∣∣ < 1 +U∗2 +U
∗
4,∣∣∣U∗3 −U∗1∣∣∣ < 2(1 −U∗4),

U∗2 − 3U∗4 < 3,
U∗2 +U

∗2

4 (1 +U∗2) +U∗
2

3 +U
∗
4(1 +U∗

2

1 ) < 1 + 2U∗2U
∗
4 +U

∗
1U

∗
3(1 +U∗4) +U∗34 ,

(7.5)

whereU∗1,U
∗
2,U∗3, andU∗4 are depicted in (7.4).

8. Numerical simulations

The following cases are to be presented in order to verify the correctness of the theoretical results.
Case I. In this case, it is examined that at h = 0.3186837362435554, the discrete HBV model (2.3)
undergoes a flip bifurcation if ϑ = 13.9, β = 2.654, α = 3.21, k = 1.976, u = 3, δ = 1.004, c =
1.4, µ = 1.7432768, p = 1.9, and h ∈ [0.01, 0.3] with (s0, I0, v0, z0) = (0.0147, 0.169, 0.2, 0.0). If
ϑ = 13.9, β = 2.654, α = 3.21, k = 1.976, u = 3, δ = 1.004, c = 1.4, µ = 1.7432768, p = 1.9, and
h = 0.3186837362435554, then from (4.22), we get

λ4 − 1.131702610917976λ3 − 0.650389459175736λ2 + 1.1486039709118576λ−
0.3327091808303837 = 0,

(8.1)

with λ1 = −1 but λ2,3,4 = 0.49978202821265805, 0.8068705153090874, 0.8250500673962229 ,
1 or − 1, and for the occurrence of flip bifurcation eigenvalues criterion holds. Therefore, the discrete
HBV model (2.3) may undergo flip bifurcation. But following simulation ensures that flip bifurcation
must exist, and so, if ϑ = 13.9, β = 2.654, α = 3.21, k = 1.976, u = 3, δ = 1.004, c = 1.4, µ =
1.7432768, p = 1.9, and h = 0.3186837362435554, then from (5.3), one gets

1 − S4 − S2 − S3
2 + S4

3
− S4

2 (1 + S2) + 2S2S4 − S1
2
S4 + S1S3 (1 + S4) =

0.5797798112011889 > 0,
1 + S2 + S4 − S3

2
− S4

3
− S4

2 (1 + S2) + S1
2
S4 − S1S3 (1 − S4) =

0.001981320720067181 > 0,
1 + S1 + S2 + S3 + S4 = 0.0338027199877623 > 0,
1 − S1 + S2 − S3 + S4 = 0,
1 + S4 = 0.6672908191696163 > 0,
1 − S4 = 1.3327091808303837 > 0,
S
′

1−S
′

2+S
′

3−S4
′

4−3S1+2S2−S3
= 0.6875891804556529 , 0.

(8.2)

Thus, from (8.2), all conditions of Theorem 5.3 hold, and hence, flip bifurcation takes place at ES.
Finally, MLE along with flip bifurcation diagrams are shown in Figure 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Bifurcation diagrams of HBV model (2.3) for (2a) It , (2b) vt, (2c) δ, and It, (2d)
δ, and vt, (2e) p, and vt, (2f) p, and It, (2g) β, and It, (2h) β, and vt, (2i) MLEs.

Case II. If h = 0.0734578, ϑ = 4.3, δ = 2.004, α = 0.41, β = 2.5, p = 1.9, k = 5.5, u = 4.6, c = 8.4,
and µ = 4.432768, then from (4.28), one has |U1 +U3| = 4.954082970547482 < 1 + U2 + U4

= 4.960842450652595, |U3 −U1| = 1.3166773911382283 < 2(1 − U4) = 1.3591781755420462,
U3 − 3U4 = 2.679198801736687 < 3, and U2 + U4

2(1 + U2) + U3
2 + U4(1 + U1

2) =
10.894757977942465 < 1 + 2U2U4 +U1U3(1 +U4) +U4

3 = 10.895174109435445, and therefore,
EES =

(
1.200649318366021, 0.5277104761904762, 0.6309581780538303, 1.6731039047520355

)
of

the discrete HBV model (2.3) is a sink (see Figure 3).
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(a) (b)

(c) (d)

Figure 3. Dynamics of HBV model (2.3) at EES.

Case III. Now, we will examine that at h = 0.00032327767915996635, the discrete HBV model (2.3)
undergoes a N-S bifurcation if ϑ = 4.3, β = 2.5, α = 0.41, k = 5.5, u = 4.6, δ = 3.004, c =
8.4, µ = 4.432768, p = 1.9, and h ∈ [0.01, 0.2] with (s0, I0, v0, z0) = (0.147, 3.169, 1.2, 1.3). If
ϑ = 4.3, β = 2.5, α = 0.41, k = 5.5, u = 4.6, δ = 3.004, c = 8.4, µ = 4.432768, p = 1.9, and
h = 0.00032327767915996635, then from (4.26), one has

λ4 − 3.9966530726007075λ3 + 5.989962690688134λ2 − 3.9899661610087445λ + 0.9966565429226788 = 0, (8.3)

with λ1,2 = 0.9998769965433948 ± 0.000806187461780547ι, λ3 = 0.9978504688163795, and λ4 =

0.9990487427589927, where |λ1,2| = 1. Therefore, the eigenvalues criterion holds for the occurrence
of said bifurcation, and so, the HBV model (2.3) may undergo a N-S bifurcation. But the rest of the
simulation shows that N-S bifurcation must exist, that is, if ϑ = 4.3, β = 2.5, α = 0.41, k = 5.5, u =
4.6, δ = 3.004, c = 8.4, µ = 4.432768, p = 1.9, and h = 0.00027921473998766453, then from (5.6),
we get
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

1 −U4 −U2 −U3
2 +U4

3
−U4

2 (1 +U2) + 2U2U4 −U1
2
U4 +U1U3 (1 +U4) = 0,

1 +U2 +U4 −U3
2
−U4

3
−U4

2 (1 +U2) +U1
2
U4 −U1U3 (1 −U4) =

7.220059305979021 × 10−8 > 0,
1 +U1 +U2 +U3 +U4 = 1.361133428190442 × 10−12 > 0,
1 −U1 +U2 −U3 +U4 = 15.973238467220266 > 0,
1 +U4 = 1.9966565429226788 > 0,
1 −U4 = 0.003343457077321199 > 0,
d

dh

(
1 −U4 −U2 −U3

2 +U4
3
−U4

2 (1 +U2) + 2U2U4 −U1
2
U4+

U1U3 (1 +U4)) |h=0.00027921473998766453 = 1.4235096688912791 × 10−13 , 0,
1 − (1−U4)(1+U1+U2+U3+U4)

2(1+U3−U4(U1+U4)) = 0.987.

(8.4)

Moreover, cos 2π
l = 0.987 implies l = ±4.33246986002. From (8.4), it is concluded that all conditions

of Theorem 5.4 hold, and hence, at EES, the HBV model (2.3) undergoes N-S bifurcation, where the
MLE along with N-S bifurcation diagrams are plotted in Figure 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Bifurcation diagrams of HBV model (2.3) for (4a) st, (4b) vt, (4c) It, (4d) zt, (4e)
st, and It, (4f) st, and vt, (4g) st, and zt, (4h) It, and zt, (4i) It, and vt, (4j) zt, and vt (4k) β, and
st. (4l) MLEs.
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Case IV. If ϑ = 12.3, β = 2.45, α = 4.1, k = 4.256, u = 1, δ = 1.004, c = 3.84,
µ = 1.7432312322768, p = 1.9, and h = 0.08978168084826603, then from (4.26), one gets:

λ4 − 1.38816571642045λ3 − 0.49893399053407883λ2 + 1.394097000247012λ−
0.49513472563936095 = 0,

(8.5)

with λ1 = −1 but λ2,3,4 = 0.6929389869902541, 0.7851203029606955, 0.9101064264695002 , 1 or −
1. This implies that eigenvalues criterion holds for the appearance of flip bifurcation if ϑ = 12.3, β =
2.45, α = 4.1, k = 4.256, u = 1, δ = 1.004, c = 3.84, µ = 1.7432312322768, p = 1.9, and
h = 0.08978168084826603. Furthermore, if ϑ = 12.3, β = 2.45, α = 4.1, k = 4.256, u = 1, δ =
1.004, c = 3.84, µ = 1.7432312322768, p = 1.9, and h = 0.08978168084826603, then from (5.9),
one has

1 −U4 −U2 −U3
2 +U4

3
−U4

2 (1 +U2) + 2U2U4 −U1
2
U4 +U1U3 (1 +U4) =

0.26727990660084344 > 0,
1 +U2 +U4 −U3

2
−U4

3
−U4

2 (1 +U2) +U1
2
U4 −U1U3 (1 −U4) =

0.00026888901369193086 > 0,
1 +U1 +U2 +U3 +U4 = 0.011709736762275158 > 0,
1 −U1 +U2 −U3 +U4 = 0,
1 +U4 = 0.4941078579878404 > 0,
1 −U4 = 1.5058921420121596 > 0,
U
′

1−U
′

2+U
′

3−U4
′

4−3U1+2U2−U3
= 9.772605285740928 , 0.

(8.6)

From (8.6), all parametric conditions of Theorem 5.5 hold, and at EES, the HBV model (2.3) undergoes
flip bifurcation (see Figure 5).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Bifurcation diagrams of HBV model (2.3) for (5a) vt, (5b) zt, (5c) st, and vt, (5d)
k, and zt, (5e) It, and vt, (5f) st, and zt, (5g) vt, and zt, (5h) δ, and zt. (5i) MLEs.

Case V. If h = 0.07834578, ϑ = 4.3, δ = 3.004, α = 0.41, β = 2.5, p = 1.9, k = 5.5, u = 4.6, c = 8.4,
µ = 4.432768, and ϱ = 0.007, then from (7.5), one gets

∣∣∣U∗1 +U∗3∣∣∣ = 4.810518929365905 < 1+U∗2 +
U∗4 = 4.8185666034767305,

∣∣∣U∗3 −U∗1∣∣∣ = 1.3672303900825242 < 2(1−U∗4) = 1.4041181034286887,
U∗2 − 3U∗4 = 2.626802810334108 < 3, and finally, U∗2 + U

∗
4

2(1 + U∗2) + U∗3
2 + U∗4(1 + U∗1

2) =
10.026614433151806 < 1+2U∗2U

∗
4+U

∗
1U

∗
3(1+U∗4)+U∗4

3 = 10.026701399999961, which implies that
EES =

(
0.516585, 2.7202, 1.10213, 8.60536

)
of the control HBV model (7.1) is a sink. The plots for

control HBV model (7.1) with (s0, I0, v0, z0) = (3.06276, 0.9821, 0.9, 0.1) are shown in Figure 6 which
demonstrates that EES =

(
0.9385786604748523, 0.5277104761904762, 0.6309581780538303, 1.2608

073891909866
)

is a sink.
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(a) (b)

(c) (d)

Figure 6. Graphs of control HBV model (7.1) at EES.

9. Conclusions

This work is about the local dynamics at equilibrium states, and we have examined the basic
reproduction number, rate of convergence, and bifurcation analysis of discrete HBV model (2.3). We
examined that for all of the model’s parameters, discrete HBV model (2.3) had a disease-free
equilibrium state. Furthermore, under certain parametric restriction(s), discrete HBV model (2.3) had
a boundary equilibrium state, that is, the state where the pathogens are present while CTLs are absent,
and an epidemic equilibrium state. Next, by liner stability theory, we examined the local dynamical
properties at equilibrium states of discrete HBV model (2.3). We have also studied the convergence
rate for discrete HBV model (2.3). Further, in order to understand the dynamics of discrete HBV
model (2.3) deeply, we have studied the possible bifurcation scenarios. We have proved that with a
disease-free equilibrium state, there exists no flip and fold bifurcations, but discrete HBV model (2.3)
undergoes flip bifurcations about the boundary equilibrium state, and Neimark-Sacker and flip
bifurcations about the epidemic equilibrium state. We have studied flip bifurcations about the
boundary equilibrium state, and Neimark-Sacker and flip bifurcations about the epidemic equilibrium
state of discrete HBV model (2.3) by utilizing explicit criterion. The rate of convergence and chaos in
discrete HBV model (2.3) were also examined. Finally, our main findings are illustrated numerically.

Boundedness, persistence, and global dynamics at equilibrium states of a discrete HBV model (2.3)
are our next aim to study.

AIMS Mathematics Volume 9, Issue 7, 19597–19625.
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