A new test to detect the change-point in the quasi-autocorrelation coefficient (QAC) structure of a simple linear model with heavy-tailed series was developed. It is more general than previous approaches to the change-point problem in that it allows for the process with innovations in the domain of the attraction of a stable law with index $ \kappa\; (0 < \kappa < 2) $. Since the existing methods for QAC change detection are not satisfactory, we converted QAC change to mean change through the moving window method, which greatly improved the efficiency. Thus, the aim of this paper was to construct a ratio-typed test based on M-estimation for the testing of mean change. Under regular conditions, the asymptotic distribution under the no change null hypothesis was functional of a Wiener process, not that of a Lévy stable process. The divergent rate under the alternative hypothesis was also given. The simulation results demonstrate that the performances of our proposed tests were outstanding. Finally, the theoretical results were applied to an analysis of daily USD/CNY exchange rates with respect to QAC change.
Citation: Xiaofeng Zhang, Hao Jin, Yunfeng Yang. Quasi-autocorrelation coefficient change test of heavy-tailed sequences based on M-estimation[J]. AIMS Mathematics, 2024, 9(7): 19569-19596. doi: 10.3934/math.2024955
A new test to detect the change-point in the quasi-autocorrelation coefficient (QAC) structure of a simple linear model with heavy-tailed series was developed. It is more general than previous approaches to the change-point problem in that it allows for the process with innovations in the domain of the attraction of a stable law with index $ \kappa\; (0 < \kappa < 2) $. Since the existing methods for QAC change detection are not satisfactory, we converted QAC change to mean change through the moving window method, which greatly improved the efficiency. Thus, the aim of this paper was to construct a ratio-typed test based on M-estimation for the testing of mean change. Under regular conditions, the asymptotic distribution under the no change null hypothesis was functional of a Wiener process, not that of a Lévy stable process. The divergent rate under the alternative hypothesis was also given. The simulation results demonstrate that the performances of our proposed tests were outstanding. Finally, the theoretical results were applied to an analysis of daily USD/CNY exchange rates with respect to QAC change.
[1] | E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.1093/biomet/41.1-2.100 doi: 10.1093/biomet/41.1-2.100 |
[2] | O. Bodnar, Application of the Generalized Likelihood Ratio Test for Detecting Changes in the Mean of Multivariate GARCH Processes, Commun. Stat. Simul. Comput., 38 (2009), 919–938. http://doi.org/10.1080/03610910802691861 doi: 10.1080/03610910802691861 |
[3] | D. M. Hawkins, K. D. Zamba, A change-point model for a shift in variance, J. Quality Technol., 37 (1994), 21–31. https://doi.org/10.1080/00224065.2005.11980297 doi: 10.1080/00224065.2005.11980297 |
[4] | C. Quintos, Z. Fan, P. Phillips, Structural Change Tests in Tail Behaviour and the Asian Crisis, Soc. Sci. Electron. Publish., 68 (2001), 633–663. https://doi.org/10.1111/1467-937x.00184 doi: 10.1111/1467-937x.00184 |
[5] | H. Jin, S. Zhang, Spurious regression between long memory series due to mis-specified structural breaks, Commun. Stat., Simul. Comput., 47 (2018), 692–711. http://doi.org/10.1080/03610918.2017.1288248 doi: 10.1080/03610918.2017.1288248 |
[6] | H. Jin, S. Zhang, J. Zhang, Modified tests for change points in variance in the possible presence of mean breaks, J. Stat. Comput. Simul., 88 (2018), 2651–2667. https://doi.org/10.1080/00949655.2018.1482300 doi: 10.1080/00949655.2018.1482300 |
[7] | B. Mandelbrot, The Variation of Certain Speculative Prices, J. Bus., 36 (1963), 394–419. https://doi.org/10.1007/978-1-4757-2763-0-14 doi: 10.1007/978-1-4757-2763-0-14 |
[8] | E. F. Fama, Portfolio analysis in a stable Paretian market, Manag. Sci., 11 (1965), 404–419. https://doi.org/10.1287/mnsc.11.3.404 doi: 10.1287/mnsc.11.3.404 |
[9] | B. Mandelbrot, Some noises with I/f spectrum, a bridge between direct current and white noise, IEEE Trans. Inform. Theory, 13 (1967), 289–298. https://doi.org/10.1109/tit.1967.1053992 doi: 10.1109/tit.1967.1053992 |
[10] | V. Paulauskas, S. T. Rachev, Cointegrated processes with infinite variance innovations, Ann. Appl. Probab., 8 (1998), 775–792. https://doi.org/10.1214/aoap/1028903450 doi: 10.1214/aoap/1028903450 |
[11] | K. Knight, Limit theory for M-estimates in an integrated infinite variance, Economet. Theory, 7 (1991), 200–212. https://doi.org/10.1017/s0266466600004400 doi: 10.1017/s0266466600004400 |
[12] | P. J. Huber, E. M. Ronchetti, Robust Stat., New York: John Wiley & Sons, 1981. https://doi.org/10.1002/0471725250 |
[13] | M. Hušková, Tests and estimators for the change point problem based on M-statistics, Stat. Risk Model., 14 (1996), 115–136. https://doi.org/10.1524/strm.1996.14.2.115 doi: 10.1524/strm.1996.14.2.115 |
[14] | R. A. Davis, K. Knight, J. Liu, M-estimation for autoregressions with infinite variance, Stoch. Proc. Appl., 40 (1992), 145–180. https://doi.org/10.1016/0304-4149(92)90142-d doi: 10.1016/0304-4149(92)90142-d |
[15] | M. Sohrabi, M. Zarepour, Asymptotic theory for M-estimates in unstable AR (p) processes with infinite variance innovations, North-Holland, 198 (2019), 105–118. https://doi.org/10.1016/J.JSPI.2018.04.001 doi: 10.1016/J.JSPI.2018.04.001 |
[16] | K. Knight, Limit theory for autoregressive-parameter estimates in an infinite-variance random walk, Can. J. Stat., 17 (1989), 261–278. https://doi.org/10.2307/3315522 doi: 10.2307/3315522 |
[17] | P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods, New York: Springer Science+Business Media, 1992. |
[18] | M. Sohrabi, M. Zarepour, A Note on Bootstrapping M-estimates from Unstable AR (2) Process with Infinite Variance Innovations, 2016. http://doi.org/10.48550/arXiv.1603.02665 |
[19] | W. Wang, Z. Cui, Y. Wang, X. Zhao, R. Chen, Regression analysis of clustered panel count data with additive mean models, Stat. Pap., 2023. http://doi.org/10.1007/s00362-023-01511-3 |
[20] | A. Xu, B. Wang, D. Zhu, J. Pang, X. Lian, Bayesian Reliability Assessment of Permanent Magnet Brake Under Small Sample Size, IEEE Trans. Reliab., 2024. http://doi.org/10.1109/TR.2024.3381072 |
[21] | W. R. Yaghi, Detecting autocovariance change in time series, PhD thesis, American University, 2007. |
[22] | D. Jarušková, Testing for a change in covariance operator, J. Syst. Sci. Complex., 143 (2013), 1500–1511. https://doi.org/10.1016/j.jspi.2013.04.011 doi: 10.1016/j.jspi.2013.04.011 |
[23] | D. Wied, W. Krämer, H. Dehling, Testing for a change in correlation at an unknown point in time using an extended functional delta method, Economet. Theory, 28 (2012), 570–589. https://doi.org/10.1017/s0266466611000661 doi: 10.1017/s0266466611000661 |
[24] | O. Na, Y. Lee, S. Lee, Monitoring parameter change in time series models, Stat. Methods Appl., 20 (2011), 171–199. https://doi.org/10.1007/s10260-011-0162-3 doi: 10.1007/s10260-011-0162-3 |
[25] | H. Dette, W. Wu, Z. Zhou, Change point analysis of correlation in non-stationary time series, Stat. Sin., 29 (2019), 611–643. https://doi.org/10.5705/SS.202016.0493 doi: 10.5705/SS.202016.0493 |
[26] | A. Yddter, M. Etdn, Investigation of the Change Point in Mean of Normal Sequence Having an Outlier, Gazi Univ. J. Sci., 26 (2013), 543–555. https://doi.org/10.1063/1.477431 doi: 10.1063/1.477431 |
[27] | D. M. Hawkins, Testing a sequence of observations for a shift in location, J. Amer. Stat. Assoc., 72 (1997), 180–186. https://doi.org/10.1080/01621459.1977.10479935 doi: 10.1080/01621459.1977.10479935 |
[28] | S. Kim, S. Cho, S. Lee, On the cusum test for parameter changes in GARCH (1, 1) models, Commun. Stat.-Theory Methods, 29 (2000), 445–462. https://doi.org/10.1080/03610920008832494 doi: 10.1080/03610920008832494 |
[29] | C. Inclán, G. C. Tiao, Use of cumulative sums of squares for retrospective detection of changes of variance, J. Amer. Stat. Assoc., 89 (1994), 913–923. http://doi.org/10.1080/01621459.1994.10476824 doi: 10.1080/01621459.1994.10476824 |
[30] | S. Lee, Y. Tokutsu, K. Maekawa, The cusum test for parameter change in regression models with ARCH errors, J. Japan Stat. Soc., 34 (2004), 173–188. https://doi.org/10.14490/jjss.34.173 doi: 10.14490/jjss.34.173 |
[31] | S. Han, Z. Tian, H. J. Wang, Change-Point in the Mean of Heavy-Tailed Dependent Observations, Chin. J. Appl. Probab. Stat., 24 (2008), 337–344. https://doi.org/10.3724/SP.J.1001.2008.01274 doi: 10.3724/SP.J.1001.2008.01274 |
[32] | L. Horváth, Z. Horváth, M. Hušková, Ratio tests for change point detection, Inst. Math. Stat. (IMS) Collect., 1 (2008), 293–304. https://doi.org/10.1214/193940307000000220 doi: 10.1214/193940307000000220 |
[33] | H. Jin, H. Lv, R. Qin, Subsampling tests for the mean change point with heavy-tailed innovations, Math. Comput. Simul., 79 (2009), 2157–2166. https://doi.org/10.1016/j.matcom.2008.11.020 doi: 10.1016/j.matcom.2008.11.020 |
[34] | B. Peštová, M. Pešta, Abrupt Change in Mean Using Block Bootstrap and Avoiding Variance Estimation, Comput. Stat., 15 (2018), 413–441. http://doi.org/10.1007/s00180-017-0785-4 doi: 10.1007/s00180-017-0785-4 |
[35] | M. Csórgő, L. Horváth, Limit Theorems in Change-Point Analysis, Lect. Notes Stat., 1 (1997), 231–259. |
[36] | S. Zhang, H. Jin, M. Su, Modified block bootstrap testing for persistence change in infinite variance observationsd, Mathematics, 12 (2024), 258. https://doi.org/10.3390/math12020258 doi: 10.3390/math12020258 |
[37] | H. Jin, A. Wang, S. Zhang, J. Liu, Subsampling Ratio Tests for Structural Changes in Time Series with Heavy-Tailed AR(p) Errors, Commun. Stat. Simul. Comput., 35 (2022), 1–27. https://doi.org/10.1080/03610918.2022.2111584 doi: 10.1080/03610918.2022.2111584 |
[38] | J. P. Nolan, Numerical calculation of stable densities and distribution functions, Commun. Stat. Stoch. Model., 13 (1997), 759–774. http://doi.org/10.1080/15326349708807450 doi: 10.1080/15326349708807450 |