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Abstract: A new test to detect the change-point in the quasi-autocorrelation coefficient (QAC)
structure of a simple linear model with heavy-tailed series was developed. It is more general than
previous approaches to the change-point problem in that it allows for the process with innovations in the
domain of the attraction of a stable law with index κ (0 < κ < 2). Since the existing methods for QAC
change detection are not satisfactory, we converted QAC change to mean change through the moving
window method, which greatly improved the efficiency. Thus, the aim of this paper was to construct a
ratio-typed test based on M-estimation for the testing of mean change. Under regular conditions, the
asymptotic distribution under the no change null hypothesis was functional of a Wiener process, not
that of a Lévy stable process. The divergent rate under the alternative hypothesis was also given. The
simulation results demonstrate that the performances of our proposed tests were outstanding. Finally,
the theoretical results were applied to an analysis of daily USD/CNY exchange rates with respect to
QAC change.
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1. Introduction

Detecting a change-point in a time series has received considerable attention for a long time,
originating from in quality control [1]. It remains a popular field of research today due to the
occurrence of sudden changes in various areas, such as financial data, signal processing, genetic
engineering, and machine learning. There is an important issue in detecting structural breaks in time
series data, which involves identifying changes in a sequence of parameters, numerical characteristics,
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or distributions that alter the model, such as a shift in mean [2], a change in variance [3], a change in
tail index [4], or a change in persistence [5, 6], etc.

However, Mandelbrot [7] has pointed out that many financial asset return distributions exhibit
characteristics, such as peakedness and heavy tails, that cannot be adequately described by traditional
normal distributions. Heavy-tailed series are better suited for capturing the distributional features of
peaks and heavy tails in financial data due to their additivity and consistency with market
observations. The distributions of commodity and stock returns often exhibit heavy tails with a
possible infinite variance, as subsequently pointed out by Fama [8] and Mandelbrot [9]. They have
initiated an investigation into time series models in which the marginal distributions exhibit regularly
varying tails. Recently, there has been increasing interest in modeling change-point phenomena using
heavy-tailed noise variables.

Developing estimation procedures for statistical models has received a great deal of interest, which
are designed to represent data with infinite variance. Under the assumption of heavy-tailed time series
with infinite variance, Paulauskas and Paulauskas [10] developed the asymptotic theory for
econometric co-integration processes. Knight [11] investigated the limiting distribution of
M-estimation for autoregressive parameters in the context of an integral linear process with infinite
variance data. These findings demonstrate that, in terms of a heavier sequence, M-estimation is
asymptotically more robust than least squares estimation (LS-estimation). M-estimation is a widely
used and important method, which was first introduced by Huber [12] in 1964 for the location
parameter model. Since then, many statisticians have shown interest in studying M-estimation, and
this led to the establishment of a series of useful results. Hušková [13] proposed and investigated a
method based on the moving sum of M-residuals to detect parameter changes and estimate the change
position. Davis [14] studied the M-estimation of general autoregressive moving average (ARMA)
processes with infinite variance, where the innovation follows a non-Gaussian stability law in its
domain of attraction, and they derived a functional limit theorem for stochastic processes and
established asymptotic properties of M-estimation. The asymptotic distribution of the M-estimation
for parameters in an unstable AR(p) process was presented in Sohrabi [15], who suggested that the
M-estimation exhibits a higher asymptotic convergence rate compared to LS-estimation due to the
fact that the LS-estimation of the mean is expressed as µ̂ − µ = Op(T 1/κ−1), whose consistency is
destroyed if κ ∈ (0, 1). Knight [16] investigated the asymptotic behavior of LS- and M-estimation for
autoregressive parameters in the context of a data generation process with an infinite variance random
walk. The study demonstrated that certain M-estimation converges more rapidly than LS-estimation,
especially in heavy-tailed distributions. Therefore, this paper employs M-estimation to estimate the
parameters.

In time series analysis, covariance, the correlation coefficient, and their sample form are
fundamental tools for studying parameter estimation, goodness of fit, change-point detection, and
other related researches. For instance, classic monographs [17, 18] have extensively discussed these
topics, and introduced numerous practical applications. Furthermore, Wang et al. [19] proposed two
semiparametric additive mean models for clustered panel count data and derived estimation equations
to estimate the regression parameters of interest for the proposed models. Xu et al. [20] provided a
bivariate Wiener model to capture the degradation patterns of two key performance characteristics of
permanent magnet brakes, and considered an objective Bayesian method to analyze degradation data
with small sample sizes. Additionally, in Yaghi’s [21] doctoral dissertation, he proposed a novel
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method to detect change in the covariance of time series by converting the change in auto-covariance
into a change in slope. Jarušková [22] investigated the equivalence of two covariance operators, and
utilized the functional principal component analysis method, which can verify the equality of the
largest eigenvalues and their corresponding eigenfunctions. Furthermore, Wied [23] proposed a test
statistic

QT (X,Y) = D̂ max
2≤ j≤T

j
√

T

∣∣∣ρ̂ j − ρ̂T

∣∣∣
to study the change in the correlation coefficient between two time series over an unknown time period,
where ρ̂ is the estimated autocorrelation coefficient, and D̂ is the regulatory parameter associated with
the long-run variance. Na [24] applied the monitoring procedure

inf
{
k > T : Tk =

∥∥∥Σ̂−1/2
T (γ̂k − γ̂T )

∥∥∥ ≥ 1
√

T
b
(

k
T

)}
to identify changes in the autocorrelation function, parameter instability, and distribution shifts within
the GARCH model,where γ̂ is the autocorrelation coefficient, Σ̂ is the long-run variance, and b (·) is a
given boundary function. Dette [25] proposed to use

V̂ (k)
n (s) = 1

n

∑bnsc
j=1

ê jê j+k

σ̂2(t j)
−
bnsc

n

∑n
j=1

ê jê j+k

σ̂2(t j)

to detect relevant changes in time series models, where êi denotes the nonparametric residuals, and σ̂
is the variance function estimation.

This paper extends previous research to heavy-tailed innovation processes and utilizes the moving
window method to convert the problem of detecting change in QAC into a change in mean. The
methods for testing mean change-points primarily include the maximum likelihood method, least
squares method, cumulative sum method (also known as CUSUM), Bayesian method, empirical
quantile method, wavelet method, and others. Among these methods, the most commonly used test
statistics for change-point problems is cumulative sum statistics. Yddter [26] and Hawkins [27]
utilized the maximum likelihood approach to investigate the mean change-point of a normal
sequence, while Kim [28] employed Incán’s [29] cumulative sum of squares (SCUSUM) method to
examine parameter changes in the generalized autoregressive conditional heteroskedasticity
(GARCH). Lee [30] utilized the residual cumulative sum method (RCUSUM) to enhance the
detection of parameter changes in GARCH (1,1). Han [31] investigated the change-point estimation
of the mean for heavy-tailed dependent sequences, and provided the consistency of the CUSUM
statistics. However, due to the non-monotonic empirical powers issue with CUSUM statistics,
ratio-typed statistics were subsequently proposed as a suitable alternative to CUSUM, particularly in
cases of infinite variance since they do not require any variance estimation for normalization. As a
result, Horváth [32] proposed a robust ratio test statistic to test the mean change-point of weakly
dependent stable distribution sequences. Jin et al. [33] applied this ratio test statistic to investigate the
mean change in their research.

The remainder of this paper is organized as follows. In Section 2, we introduce our ratio-typed test
and derive its asyptotic properties under both the null hypothesis and the alternative, and the asymptotic
behavior of the parameter estimation and ratio-typed test is studied. Section 3 presents the Monte
Carlo simulation results. Section 4 offers an empirical application example and Section 5 concludes
the paper.

AIMS Mathematics Volume 9, Issue 7, 19569–19596.



19572

2. Materials and methods

2.1. Model and hypothesis

The above-mentioned methods require estimation of the long-run variance to execute the test for
the change in the autocorrelation coefficient. However, since the heavy-tailed sequence has an infinite
variance, the results of these tests are not applicable. We use Yaghi [21]’s moving window method
to combine the QAC of each window into a new series and utilize ratio test statistics to test mean
change, which avoids the need for estimating long-run variance. In this paper, the primitive time series
{yt, 1 ≤ t ≤ T } would satisfy the following conditions,

yt = µ + βt + ξt, (2.1)
ξt = c1ξt−1 + c2ξt−2 + · · · + ηt, (2.2)

where µ and β are the intercept and the time trend, and T is the sample size. ξt refers to a p-order
autoregressive process. We assume throughout this paper that the error term ηt belongs to the domain
of attraction of a stable law. For any x > 0, then

T P(|ηt| > aT x)→ x−κ,

where aT = inf{x : P(|ηt| > x) ≤ T−1}, and

lim
x→∞

P(ηt>x)
P(|ηt |>x) = q ∈ [0, 1].

The tail thickness of the observed data is determined by tail index κ, which is unknown. Well-known
special cases of ηt are the Gaussian (κ = 2) and Cauchy (κ = 1) distributions. When κ ∈ (0, 2), the
distribution has the moment behavior: E|ηt|

ν = ∞ once ν ≥ κ, and thus ηt has infinite variance, it is
heavy-tailed.

The variance of the heavy-tailed sequence yt is infinite, but the variance of T
κ
2−1yt is finite.

Proof. Multiply both sides of the model (1.1) by a control velocity T
κ
2−1,

T
κ
2−1yt = T

κ
2−1µ + T

κ
2−1βt + T

κ
2−1ξt

where κ ∈ (0, 2), and T represents the sample size. We then prove the existence of the first and second
moments of T ( κ2−1)ξt. According to the definition of the stable distribution, we obtain

lim
T→∞

T κP (X > T ) = C (σ, β, µ) ,

where C (σ, β, µ) is bounded. This means that there is at least one sufficiently large M, that when
T > M, there is P (X > T ) = O (T−κ).

Note that

E(T
κ
2−1ξt) =

∫ +∞

−∞

T
κ
2−1ξ f (ξ)dξ =

∫ +∞

−∞

T
κ
2−1ξdF(ξ)

= T
κ
2−1

∫ −M

−∞

ξdF (ξ) + T
κ
2−1

∫ M

−M
ξdF (ξ) + T

κ
2−1

∫ ∞

M
ξdF (ξ) .
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Since as T → ∞, then T
κ
2−1 → 0, and

∫ M

−M
ξdF (ξ) ≤ M

∫ +∞

−∞
1dF (ξ) = M. Here, the second term

tends to zero. Next, we only prove the third term, and the proof for the first term is similar.
Let P (X > T ) = F(T ) = 1 − F(T ), then F(∞) = 0, and we get

T
κ
2−1

∫ +∞

M
ξdF (ξ) = T

κ
2−1

∫ +∞

M
ξd(1 − F(ξ)) = −T

κ
2−1

∫ +∞

M
ξdF(ξ)

= −T
κ
2−1ξF(ξ) |∞M +T

κ
2−1

∫ +∞

M
F(ξ)dξ.

Because T
κ
2−1MF(M) = T

κ
2−1M1−κMκF(M)→0, then T

κ
2−1ξF(ξ)→0, as ξ → ∞. On the other hand,

due to F(∞) = 0, it leads to T
κ
2−1

∫ +∞

M
F(ξ)dξ → 0, and E(T ( κ2−1)ξt) = 0.

Similarly, the existence of E(T κ−1ξ2
t ) can be dealt with the same way. We complete the proof of the

variance of T
κ
2−1ξt.

In this study, our primary objective is to attain a more significant leap in amplitude. Consequently,
we concentrate on the first-order autocorrelation coefficient, whereas the second-order and higher-
order autocorrelation coefficients tend to diminish or fluctuate within the interval of (−1, 1). We define
the first-order QAC of the heavy-tailed sequences as follows, t = 1, · · · ,T ,

α(1) =
Cov(T

κ
2−1yt,T

κ
2−1yt−1)√

D
(
T

κ
2−1yt

)√
D

(
T

κ
2−1yt−1

) .
Thus, the corresponding sample correlation coefficient is defined as

α̂(1) =

1
T

∑T
k=1

(
T

κ
2−1yk − T

κ
2−1ȳ

) (
T

κ
2−1yk+1 − T

κ
2−1ȳ

)
√

1
T

∑T
k=1

(
T

κ
2−1yk − T

κ
2−1ȳ

)2
√

1
T

∑T
k=1

(
T

κ
2−1yk+1 − T

κ
2−1ȳ

)2
,

where ȳ = 1
T

∑T
i=1 yi.

Through simulation experiments, it was found that the presence of intercept and slope parameters
had a significant impact on the changes in the QAC. Therefore, it is crucial to detrend the intercept
and slope parameters in the model because noticeable variations occur in the QAC when the regression
coefficient of the AR(p) series alters. Now, we use a simple example to employ a moving window
method to simulate this phenomenon. Suppose the sequence follows an AR(1) model with a change in
autoregressive parameter,

yt = 1 + 0.2t + ξt, (2.3)
ξt = 0.1ξt−11{t≤[Tτ∗]} + 0.7ξt−11{t>[Tτ∗]} + ηt. (2.4)

Now, we conside a window width m = 10, lag number d = 1, sample size T = 1200, change
position τ∗ = 0.5, and tail index κ = 1.2. Since each window has a width of m and a lag of d, it results
in the number of windows n = f loor((T −m)/d) + 1 and obtains n = T −m + 1 sets of the sub-sample,
namely, {yt, t = 1, · · · ,m}, {yt, t = 2, · · · ,m + 1}, · · · , {yt, t = T − m + 1, · · · ,T }.
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Figure 1(a) indicates that the change in α̂ j(1) based on the sub-sample {y j, · · · , y j+m−1}, j = 1, · · · , n,
is not obvious, where

α j(1) =

1
m

∑ j+m−1
k= j

(
T

κ
2−1y j − T

κ
2−1ȳ j

) (
T

κ
2−1y j+1 − T

κ
2−1ȳ j

)
√

1
m

∑ j+m−1
k= j

(
T

κ
2−1y j − T

κ
2−1ȳ j

)2
√

1
m

∑ j+m−1
k= j

(
T

κ
2−1y j+1 − T

κ
2−1ȳ j

)2
,

and ȳ j = 1
m

∑ j+m−1
t= j y j. Under some regular conditions, it has beem proven that α j(1) can converge to

α(1) in probability. On the other hand, if there are consistent estimates of parameters µ and β, we can
have the residuals {ξ̂ j, · · · , ξ̂ j+m−1}, j = 1, · · · , n, where ξ̂t = yt − µ̂ − β̂t. This means that the intercept
and slope have detrended. Thus, Figure 1(b) shows that α̂ j(1) based on the sub-sample {ξ̂ j, · · · , ξ̂ j+m−1},
j = 1, · · · , n, have more pronounced fluctuation, where

α̂ j(1) =

1
m

∑ j+m−1
k= j

(
T

κ
2−1ξ̂ j − T

κ
2−1 ¯̂ξ j

) (
T

κ
2−1ξ̂ j+1 − T

κ
2−1 ¯̂ξ j

)
√

1
m

∑ j+m−1
k= j

(
T

κ
2−1ξ̂ j − T

κ
2−1 ¯̂ξ j

)2
√

1
m

∑ j+m−1
k= j

(
T

κ
2−1ξ̂ j+1 − T

κ
2−1 ¯̂ξ j

)2
, (2.5)

and ¯̂ξ j = 1
m

∑ j+m−1
t= j ξ̂ j.
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(a) The intercept and slope are not removed
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(b) The intercept and slope are removed

Figure 1. QAC consists of two types of series: yt and yt − µ̂ − β̂t.

Moreover, it is worth noting that

α(1) =
Cov(T

κ
2−1yt,T

κ
2−1yt−1)√

D
(
T

κ
2−1yt

)√
D

(
T

κ
2−1yt−1

) =
Cov(T

κ
2−1ξt,T

κ
2−1ξt−1)√

D
(
T

κ
2−1ξt

)√
D

(
T

κ
2−1ξt−1

) . (2.6)

Because α̂ j(1) can converge to α(1) in probability, we focus on an autocorrelation coefficient
consisting of ξ̂t, not yt. As shown in Figure 1, if a change in mean is observed in the new series
α̂1(1), · · · , α̂n(1), it can be explained that the QAC of the primitive sequence yt has changed. The
problem of testing the null hypothesis of no QAC change can be illustrated as

H0 : α̂1(1) = α̂2(1) = · · · = α̂n(1)

AIMS Mathematics Volume 9, Issue 7, 19569–19596.



19575

against the alternative hypothesis

H0 : α̂1(1) = α̂2(1) = · · · = α̂[nτ](1) = γ1 , α̂[nτ]+1(1) = α̂[nτ]+2(1) = · · · = α̂n(1) = γ2.

Therefore, we would convert the QAC change to the mean change.

2.2. Asymptotic properties of M-estimation

Prior to deriving the asymptotic properties of the following ratio-typed test, it is necessary to
establish a lemma that proves the consistency of M-estimations for both intercept and slope
parameters under the null hypothesis for all κ ∈ (0, 2]. To estimate the parameters µ and β by
M-estimation, µ̂ and β̂ are defined as solutions of the minimization problem

arg min
µ,β∈R

T∑
t=1

ρ(yt − µ − βt), (2.7)

where ρ is a convex loss function. The estimations in equation (2.5) are sometimes also defined as the
solution to the following equation,

T∑
t=1

φ(yt − µ − βt) = 0. (2.8)

Throughout this paper, we will make the following assumptions about the loss function ρ and the
distribution of random variables ξ1, · · · , ξT .

Assumption 1. The distribution Fξ of random error term ξt is in the domain of attraction of a stable
law with index κ ∈ (0, 2), and ηt is an independent identically distributed sequence (i.i.d).
(1) If κ > 1, then E(ξt) = 0;
(2) while if κ < 1, ξt has a symmetric distribution.

Assumption 2. Let ρ be a convex and twice differentiable function, and take ρ′ = φ, where φ is
Lipschitz continuous, then there is a real number K ≥ 0 made for all x and y thus that |φ′(x) − φ′(y)| ≤
K |x − y|.

Assumption 3. Finally, we will make the following assumptions about the random variable φ(ξt):
(1) E(φ(ξt)) = 0;
(2) 0 < σ2

ξ(φ) = Eφ2(ξt) + 2
∑∞

i=0 Eφ(ξt)φ(ξt+i) < ∞.

Assumptions 1, 2, and 3 are standard conditions for deriving the asymptotic properties based on
M-estimation, although extra moment conditions are imposed on φ and φ′. Note that ρ is an almost
everywhere differentiable convex function that ensures the uniqueness solution. Although ρ′ may
not exist in this case, M-estimation can still be counted under certain additional conditions for the
asymptotic theory. This paper only considers situations where ρ′ exists. We mainly consider two
types of estimation methods, φ(x) = x (LS-estimation) and φ(x) = xI{|x| ≤ K} + Ksgn(x)I{|x| > K}
(M-estimation).
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In the view of the moving window method for fixed d, we can rewrite formula (2.3) and obtain the
following first-order QAC α̂ j(1), j = 1, · · · , n,

α̂ j(1) =

1
m

∑d( j−1)+m
k=d( j−1)+1

(
T

κ
2−1ξ̂k − T

κ
2−1 ¯̂ξ j

) (
T

κ
2−1ξ̂k+1 − T

κ
2−1 ¯̂ξ j

)
√

1
m

∑d( j−1)+m
k=d( j−1)+1

(
T

κ
2−1ξ̂k − T

κ
2−1 ¯̂ξ j

)2
√

1
m

∑d( j−1)+m
k=d( j−1)+1

(
T

κ
2−1ξ̂k+1 − T

κ
2−1 ¯̂ξ j

)2
, (2.9)

where ¯̂ξ j = 1
m

∑d( j−1)+m
i=d( j−1)+1 ξ̂i and ξ̂t = yt − µ̂ − β̂t. The QAC of all windows based on the residuals ξ̂k

constitute a new sequence of {α̂ j(1), j = 1, 2, . . . , n}. Recall that n = f loor((T −m)d) + 1 represents the

sequence number of windows. Here,
d
→ and

p
→ denote convergence in distribution and convergence in

probability, respectively.

Lemma 2.1. If Assumptions 1–3 hold, µ̂ and β̂ minimize formula (2.5), and under the null hypothesis,
then

T 3/2(β̂ − β)
d
→

6σξ(φ)W(1) − 12σξ(φ)
∫ 1

0
rW(r)dr

E (φ′ (ξt))
,

T 1/2(µ̂ − µ)
d
→
−2σξ(φ)W(1) + 6σξ(φ)

∫ 1

0
rW(r)dr

E (φ′ (ξt))
,

where W(·) is a Wiener process.

Proof. The proof is essentially the same as that in Knight [16]. Define the process

Z(u, v) =

T∑
t=1

(ρ(ξt − T−3/2ut − T−1/2v) − ρ(ξt)),

with (u, v) = (T 3/2(β̂ − β),T 1/2(µ̂ − µ)) minimizing Z(u, v). By a Taylor series expansion of each
summand of Z around u = 0, v = 0, then

Z(u, v) = − uT−3/2
T∑

t=1

tφ (ξt) − vT−1/2
T∑

t=1

φ (ξt) +
1
2

u2T−3
T∑

t=1

t2φ′
(
ξ∗t

)
+

1
2

v2T−1
T∑

t=1

φ′
(
ξ∗t

)
+ uvT−2

T∑
t=1

tφ′
(
ξ∗t

)
=

5∑
i=1

Ii,

(2.10)

where ξ∗t ∈
(
ξt ±

∣∣∣T−3/2ut + T−1/2v
∣∣∣). Using the Lipschitz continuity of φ′, then∣∣∣φ′(ξt) − φ′(ξ∗t )

∣∣∣ ≤ C
∣∣∣T−3/2ut + T−1/2v

∣∣∣
with bounded C, and we get

T−1
T∑

t=1

∣∣∣φ′(ξt) − φ′(ξ∗t )
∣∣∣ ≤ C

∣∣∣T−3/2ut + T−1/2v
∣∣∣→ 0.
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Thus, φ′(ξ∗t ) can be approximately replaced by φ′(ξt).
Under Assumptions 1–3, since φ (ξt) satisfies the central limit theorem, it yields

1
√

T

[Tr]∑
t=1

φ (ξt)
d
→ σξ(φ)W(r), (2.11)

where σ2(φ) = Eφ2(ξt) + 2
∑∞

i=0 Eφ(ξt)φ(ξt+i). By some algebraic derivation, we have

I1 = −uT−3/2
T∑

t=1

tφ (ξt)
d
→ −uσξ(φ)

(
W(1) −

∫ 1

0
rW

(
r′
)

dr′
)
, (2.12)

and

I2 = −vT−1/2
T∑

t=1

φ (ξt)
d
→ −vσξ(φ)W(1). (2.13)

By the theorem of large numbers, we get

sup
0≤r≤1

1
T

[Tr]∑
t=1

|φ′(ξt) − Eφ′(ξt)|
p
→ 0.

This shows that φ′(ξt) can be asympotically replaced by Eφ′(ξt), resulting in

I3 =
1
2

u2T−3
T∑

t=1

t2φ′ (ξt)
d
→

1
6

u2E
(
φ′ (ξt)

)
, (2.14)

I4 =
1
2

v2T−1
T∑

t=1

φ′ (ξt)
d
→

1
2

v2E
(
φ′ (ξt)

)
, (2.15)

and

I5 = uvT−2
T∑

t=1

tφ′ (ξt)
d
→

1
2

uvE
(
φ′ (ξt)

)
. (2.16)

Together with (3)–(7), we can rewrite (1) as

Z(u, v)→ −uσξ(φ)
(
W(1) −

∫ 1

0
rW(r)dr

)
− vσξ(φ)W(1) +

1
6

u2E
(
φ′ (ξt)

)
+

1
2

v2E
(
φ′ (ξt)

)
+

1
2

uvE
(
φ′ (ξt)

)
and take the partial derivative on it with respect to u and v

∂Z(u, v)
∂u

= −σξ(φ)
(
W(1) −

∫ 1

0
rW(r)dr

)
+

1
3

uE
(
φ′ (ξt)

)
+

1
2

vE
(
φ′ (ξt)

)
= 0,

∂Z(u, v)
∂v

= −σξ(φ)W(1) + vE
(
φ′ (ξt)

)
+

1
2

uE
(
φ′ (ξt)

)
= 0.
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The solution is 
u =

6σξ(φ)W(1) − 12σξ(φ)
∫ 1

0
rW(r)dr

E (φ′ (ξt))
,

v =
2σW(1) − 6σξ(φ)

∫ 1

0
rW(r)dr

E (φ′ (ξt))
.

This, in turn, implies that

(
T 3/2(β̂ − β)
T 1/2(µ̂ − µ)

)
d
→


6σξ(φ)W(1) − 12σξ(φ)

∫ 1

0
rW(r)dr

E (φ′ (ξt))
−2σξ(φ)W(1) + 6σξ(φ)

∫ 1

0
rW(r)dr

E (φ′ (ξt))

 .
Therefore, the proof is complete.
Lemma 2.1 shows the convergence rate for µ̂ and β̂ based on M-estimation are T−1/2 and T−3/2 under

the heavy-tail environment, which are the same as those in the case of a Gaussian process. Furthermore,
the simulation study has revealed that the parameter estimations based on M-estimation are consistent
and more robust than those based on the LS-method. The QAC plays a crucial role in time series
analysis by measuring the degree to which successive observations are correlated with each other over
time. The consistency of these estimations ensures that our comprehension of such correlations remains
robust and trustworthy. Consequently, we can present the ratio-typed test to detect a change in mean
and discuss its asymptotic properties.

2.3. Ratio-typed test

For the sake of convenience, we define ω j = α̂ j(1). Without loss of generality, we suppose ω j

follows an AR(p) process with a drift, that is, ωt = γ + γ1ωt−1 + · · · + γpωt−p + εt. By using a t-test to
fit the QAC sequence, it is found that when p = 1, the P-value is 0.0086, which is greater than 0.001;
whereas when p = 0, the P-value is 6 × 10−213, which is much smaller than 0.001. The smaller the
P-value is, the better the goodness-of-fit is. This means that, under the null hypethesis of no change,
the QAC series can be fitted by the mean model

ωt = γ + εt, t = 1, · · · , n, (2.17)

where εt is assumed to meet Assumption 1. However, under the alternative hypothesis, the QAC series
would follow the mean model with a change,

ωt = γ∗11{t≤[nτ]} + γ∗21{t>[nτ]} + εt, (2.18)

where γ∗1 , γ
∗
2 and τ is an unknown change-point.

Hence, for testing a change in the QAC under original sequence {yt, t = 1, · · · ,T }, it can be
converted into mean change detection with sequence {ω1, ω2, · · · , ωn}. The mean change test has been
extensively studied and is relatively mature. Because these innovations {εt, t = 1, · · · , n} in sequence
{ω1, ω2, · · · , ωn} maybe follow a heavy-tailed distribution, this paper extensively studies test
procedures that utilize the ratio-typed test based on M-residuals to detect changes in mean.
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Our inspiration is derived from Horváth’s description (2008) [32] of ratio-typed tests and their
robustness performance, and by the framework of test statistics, which is on the basis of Peštová and
Pešta (2018) [34]. The ratio-typed test based on M-residuals is expressed as

Vn = max
0≤s≤1

Vn(s),

Vn(s) =

∣∣∣∣∣∣[ns]∑
t=1
φ(ωt − γ̂(φ))

∣∣∣∣∣∣
max

1≤[nv]≤[ns]

∣∣∣∣∣∣[nv]∑
i=1
φ(ωi − γ̂1(φ))

∣∣∣∣∣∣ + max
[ns]+1≤[nv]≤n

∣∣∣∣∣∣ n∑
i=[nv]

φ(ωi − γ̂2(φ))

∣∣∣∣∣∣
.

The score function φ is chosen in two forms. The problem of testing the null hypothesis of no QAC
change can be illustrated as: φ(x) = x, x ∈ R, and these procedures could be reduced to classic LS
procedures (Csörgo and Horváth (1997) [35]). In a similar vein, these procedures are simplified to the
Huber function truncation process if φ(x) = xI{|x| ≤ K} + Ksgn(x)I{|x| > K}. γ̂(φ) is the M-estimation
of parameter γ generated by a score function ρ with sequence {ω1, ω2, · · · , ωn}, i.e., it is defined as a
solution of the minimization problem

arg min
γ∈R

n∑
t=1

ρ(ωt − γ), (2.19)

where ρ is a convex loss function. Sometimes, the estimation in (2.9) is also defined as a solution of
the following equation:

n∑
t=1

φ(ωt − γ) = 0, (2.20)

where ρ and φ satisfy Assumption 2.
Analogous to γ̂(φ), the M-estimates γ̂1(φ) and γ̂2(φ) are computed, respectively, from sequences

ω1, · · · , ω[ns] and ω[ns]+1, · · · , ωn. They are solutions to these equations:

[ns]∑
t=1

φ(ωt − γ) = 0, (2.21)

and
n∑

t=[ns]+1

φ(ωt − γ) = 0. (2.22)

Prior to deriving asymptotic properties of the proposed ratio-typed test, we assume that φ(εt)
follows Assumption 3 and give the lemma that, under the null hypothesis, the M-estimation should be
consistent for all κ ∈ (0, 2].

Lemma 2.2. If Assumptions 4–6 hold, under the null hypothesis, we have

n1/2(γ̂(φ) − γ)
d
−→

σε(φ) ·W(1)
E(φ′(εt))

.
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Similarly

n1/2(γ̂1(φ) − γ)
d
−→ σε(φ)

W(s)
sE(φ′(εt))

,

n1/2(γ̂2(φ) − γ)
d
−→ σε(φ)

W(1) −W(s)
(1 − s)E(φ′(εt))

,

where σ2
ε(φ) = Eφ2(εt) + 2

∑∞
i=0 Eφ(εt)φ(εt+i) and W(·) is a Wiener process.

Proof. Define the process

Z(u) =

n∑
t=1

{
ρ(εt + un−1/2) − ρ(εt)

}
,

with u = n1/2(γ − γ̂(φ)). By a Taylor series expansion of each summand of Z around u = 0, then

Z(u) = un−1/2
n∑

t=1

φ(εt) +
1
2

u2n−1
n∑

t=1

φ′(ε∗t ), (2.23)

where ε∗t ∈ (εt, εt ± |un−1/2|). Using the Lipschitz continuity of φ′, then |φ′(εt)− φ′(ε∗t )| ≤ C|un−1/2| with
bounded C, and we get

n−1
n∑

t=1

∣∣∣φ′(εt) − φ′(ε∗t )
∣∣∣ ≤ C|un−1/2| → 0 (2.24)

uniformly over u in compact sets. By the theorem of large numbers, then

sup
0≤s≤1

1
n

[ns]∑
t=1

|φ′(εt) − Eφ′(εt)|
d
−→ 0. (2.25)

Combining n−1/2
[ns]∑
t=1

φ(εt)
d
−→ σε(φ)W(s) with (9) and (10), it yields

Z(u) = un−1/2
n∑

t=1

φ(εt) +
1
2

u2n−1
n∑

t=1

φ′(ε∗t )
d
→ uσε(φ)W(s) +

1
2

u2E(φ′(εt)). (2.26)

Find the minimum value in (11), and we have

Z′(u3) = n−1/2
n∑

t=1

φ(εt) + un−1
n∑

t=1

E(φ′(εt)) = 0,

so it turns out

n1/2(γ̂(φ) − γ) = −u =
n−1/2 ∑n

t=1 φ(εt)
n−1 ∑n

t=1 E(φ′(εt))
d
−→

σε(φ) ·W(1)
E(φ′(εt))

.

Similarly, the asymptotic distributions of n1/2(γ̂1(φ) − γ) and n1/2(γ̂2(φ) − γ) can be obtained in the
same way. Therefore, the proof is complete.

Subsequently, we examine the performance of the ratio-typed test in the presence of a mean change.
The ensuing lemma serves as a crucial tool for achieving the desired outcomes under the alternative
hypothesis.
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Lemma 2.3. If Assumptions 4–6 hold, and under the alternative hypothesis, we have:
(i) for i = 1, 2, both γ̂(φ) − γ∗i = Op(1) hold,
(ii) let a constant θ , 0, then

if s ∈ (0, τ − θ], we have γ̂1(φ) − γ∗1 = Op(n−1/2), and γ̂2(φ) − γ∗2 = Op(1),
if s ∈ [τ + θ, 1), we have γ̂1(φ) − γ∗1 = Op(1), and γ̂2(φ) − γ∗2 = Op(n−1/2),

(iii) if s = τ, n1/2(γ̂1(φ) − γ∗1) and n1/2(γ̂2(φ) − γ∗2) have the same asymptotic distributions as those in
Lemma 2.2.

Proof.(i) To confirm γ̂(φ)− γ1 = Op(1), it is sufficient to prove that γ̂(φ)− γ1 does converge to nonzero
in probability. Without loss of generality, we assume n1/2(γ̂(φ) − γ1) = Op(1). Under the alternative
hypothesis, define the process

Qn(u) =

[nτ]∑
t=1

{φ(εt + n−1/2u) − φ(εt)} +
n∑

t=[nτ]+1

{φ(εt + (γ2 − γ1) + n−1/2u) − φ(εt)}

M
= Qn,1(u) + Qn,2(u), (2.27)

where u = n1/2(γ1 − γ̂(φ)).
By a Taylor series expansion of each summand of Qn,1(u), it yields

Qn,1(u) = n−1/2u
[nτ]∑
t=1

φ(εt) +
1
2

n−1u2
[nτ]∑
t=1

φ′(ε̃t), (2.28)

where ε̃t ∈ (εt, εt ± n−1/2|u|). Similarly, we can get a Taylor series expansion of each summand Qn2(u)
as follows

Qn,2(u) = (n−1/2u + (γ2 − γ1))
n∑

t=[nτ]+1

φ(εt) +
1
2

(n−1/2u + (γ2 − γ1))2
n∑

t=[nτ]+1

φ′( ˜̃εt), (2.29)

where ˜̃εt ∈ (εt, εt ± |n−1/2u + (γ2 − γ1)|).
In view of (13) and (14), to find ind the minimum value in (11), it turns out that

Q′n(u) = n−1/2
n∑

t=1

φ(εt) + un−1
[nτ]∑
t=1

φ′(ε̃t) + (un−1 + n−1/2(γ2 − γ1))
n∑

t=[nτ]+1

φ′( ˜̃εt) + op(1) = 0. (2.30)

Using the Lipschitz continuity of φ′, we have

n−1
[nτ]∑
t=1

|φ′(εt) − φ′(ε̃t)| ≤ n−1/2Cτ|u| → 0.

However, because of γ2 , γ1, then

n−1
n∑

t=[nτ]+1

|φ′(εt) − φ′( ˜̃εt)| ≤ C(1 − τ)|n−1/2u + (γ2 − γ1)|9 0.
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Thus, because of the fact that

sup
0<r<1

n−1
[nr]∑
t=1

(φ′(ε) − E(φ′(ε)))
p
−→ 0, (2.31)

we rewrite (15) as follows

Q′n(u) = n−1/2
n∑

t=1

φ(εt) + un−1
[nτ]∑
t=1

E(φ′(εt)) + (un−1 + n−1/2(γ2 − γ1))
n∑

t=[nτ]+1

E(φ′( ˜̃εt)) = 0.

To find the solution to the equation Q′n(u) = 0, we have

u = −

n−1/2
n∑

t=1
φ(εt) + n−1/2(γ2 − γ1)

∑n
t=[nτ]+1 E(φ′( ˜̃εt))

τE(φ′(εt)) + n−1 ∑n
t=[nτ]+1 E(φ′( ˜̃εt))

= Op(n1/2),

which holds due to E( ˜̃ε) = Op(1). Recall that u = n1/2(γ1 − γ̂(φ)), and it shows that γ̂(φ) − γ1 should
converge to nonzero, which contradicts the artificial assumption. Hence, we prove that γ̂(φ) − γ1 =

Op(1), and can deal with γ̂(φ) − γ2 = Op(1) in the same way.
(ii) Since the estimator γ̂(φ) is constructed on the basic of data ω1, · · · , ωn, which involve the

structural change in location, it turns out that γ̂1(φ) − γi = Op(1), i = 1, 2. For the same reason, we
still suppose that u = n1/2(γ1 − γ̂(φ)) is bounded. If s ∈ (τ + θ, 1), because the estimator γ̂1(φ) consists
of data ω1, · · · , ω[ns], we rewrite (12) in the form

Qn(u) =

[nτ]∑
t=1

{φ(εt + n−1/2u) − φ(εt)} +
[ns]∑

t=[nτ]+1

{φ(εt + (γ2 − γ1) + n−1/2u) − φ(εt)}.

Using the same proof process as discussed above, we obtain

u = −

n−1/2
[ns]∑
t=1
φ(εt) + n−1/2(γ2 − γ1)

∑[ns]
t=[nτ]+1 E(φ′( ˜̃εt))

τE(φ′(εt)) + n−1 ∑[ns]
t=[nτ]+1 E(φ′( ˜̃εt))

.

Note that θ = s − τ , 0, and it again leads to u = Op(n1/2), which is inconsistent with u being
bounded. Hence, it turns out that γ̂1(φ) − γ1 = Op(1). While the estimator γ̂2(φ) consists of data
ω[ns]+1, · · · , ωn which are not contaminated, it implies that the asymptotic distribution of n1/2(γ̂2(φ)−γ2)
is asymptotically equivalent to that shown in Lemma 2.2. Similarly, if s ∈ (0, τ − θ), the assertions of
γ̂1(φ) − γ1 = Op(n−1/2) and γ̂2(φ) − γ2 = Op(1) do hold.

(iii) When s = τ, the two sets of data ω1, · · · , ω[ns] and ω[ns]+1, · · · , ωn do not become contaminated
even if under the alternative hypothesis. Thus, the convergence of γ̂1(φ) and γ̂2(φ) still exists, and the
proof of their asympotic distribution is similar to that in Theorem 2.1 Thus, the proof is complete.

As stated in Lemma 2.3, if any of the estimation equations (2.10)–(2.13) involve observations with
a change in mean, the corresponding M-estimation will be biased. If s = τ, the asymptotic results for
γ̂1(φ) and γ̂2(φ) are consistent with Lemma 2.2.
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Theorem 2.1. (Under null) Suppose sequences {ω1, · · · , ωn} follow model (2.8) under the null
hypothesis, as n→ ∞, and we have,

Vn
d
−→ sup

0≤s≤1

|W(s) − sW(1)|
sup

0≤v≤s
|W(v) − v

sW(s)| + sup
s<v≤1
|W(1) −W(v) − 1−v

1−s (W(1) −W(s))|
.

Proof. The proof is analogous in several steps with the proof of Theorem 1.1 in Horváth [32]. By the
mean value theorem, it leads to

φ(ωt − γ̂(φ)) = φ(εt + γ − γ̂(φ)) = φ(εt) + φ′(ε∗∗t )(γ − γ̂(φ)),

where ε∗∗t satisfies |φ′(εt) − φ′(ε∗∗t )| ≤ C|γ − γ̂(φ)|.
Combining Lemma 2.2 with (9) and (10), we have

n−1/2
[ns]∑
t=1

φ(ωt − γ̂(φ)) = n−1/2
[ns]∑
t=1

φ(εt) + n−1/2(γ − γ̂(φ))
[ns]∑
t=1

φ′(εt) + op(1)

d
−→σε(φ)W(s) −

σε(φ) ·W(1)
E(φ′(εt))

sE(φ′(εt))

= σε(φ) · (W(s) − sW(1)), (2.32)

which holds due to n−1/2(γ − γ̂(φ)) max
0≤s≤1

∑[ns]
t=1

∣∣∣φ′(εt) − φ′(ε∗∗t )
∣∣∣ ≤ C|n−1/2n−1(γ − γ̂(φ))2|

d
−→ 0.

Actually, the proof of the first and second terms of the denominators is roughly analogous, so we
just handle the second one.

n−1/2
n∑

i=[nv]+1

φ(γi − γ̂2(φ)) = n−1/2
n∑

i=[nv]+1

φ(εi) + n−1/2(γ − γ̂2(φ))
n∑

i=[nv]+1

φ′(ε∗∗∗i )

= n−1/2
n∑

i=[nv]+1

φ(εi) + n−1/2(γ − γ̂2(φ))
n∑

i=[nv]+1

φ′(εi) + op(1)

−→σε(φ)
(
W(1) −W(v) −

W(1) −W(s)
(1 − s)

(1 − v)
)
, (2.33)

where ε∗∗∗t ∈ (εt, εt ± n1/2|γ − γ̂2(φ)|). Similarly, we can obtain

n−1/2
[nv]∑
i=1

φ(ωi − γ̂1(φ))
d
−→ σε(φ) ·

(
W(v) −

v
s
W(s)

)
. (2.34)

Therefore, together with (17), (18), and (19), it yields

Vn = max
1≤[ns]≤n

n−1/2

∣∣∣∣∣∣[ns]∑
t=1
φ(ωt − γ̂(φ))

∣∣∣∣∣∣
max

1≤[nv]≤[ns]
n−1/2

∣∣∣∣∣∣[nv]∑
i=1
φ(ωi − γ̂1(φ))

∣∣∣∣∣∣ + max
[ns]+1≤[nv]≤n

n−1/2

∣∣∣∣∣∣ n∑
i=[nv]

φ(ωi − γ̂2(φ))

∣∣∣∣∣∣
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d
−→ sup

0≤s≤1

|W(s) − sW(1)|
sup

0≤v≤s
|W(v) − v

sW(s)| + sup
s<v≤1
|W(1) −W(v) − 1−v

1−s (W(1) −W(s))|
.

Therefore, the proof is complete.
Theorem 2.1 demonstrates that, under the null hypothesis, the proposed test Vn converges to a

function of the Wiener process. In comparison with existing results, the asymptotic distribution
remains robust against variations in tail index and therefore yields a unique critical value for any
given significance level. Thus, the ratio-typed test is robust to heavy-tailed series with infinite
variance, which has the advantage of avoiding tail index estimation for real data and greatly improves
operational efficiency.

Next, we study the behavior of the ratio-typed test if there is a mean change. The following theorem
is crucial for obtaining the desired results under the alternative hypothesis.

Theorem 2.2. (Under alternative) Suppose sequences {ω1, · · · , ωn} follow model (2.9) under the
alternative hypothesis, as n→ ∞, and we have

Vn = Op(n1/2).

Proof. When s ∈ (τ+θ, 1), according to the proofs of Lemma 2.3 and Theorem 2.1, we have γ̂1(φ)−γ1 =

Op(1), γ̂2(φ) − γ2 = Op(1), and γ̂2(φ) − γ2 = Op(n−1/2) under the alternative hypothesis. For the
numerator of Vn, by the mean value theorem, it yields∣∣∣∣∣∣∣

[ns]∑
t=1

φ(ωt − γ̂(φ))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
[nτ]∑
t=1

φ(εt + (γ1 − γ̂(φ)) +

[ns]∑
t=[nτ]+1

φ(εt + (γ2 − γ̂(φ))

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
[nτ]∑
t=1

[φ(εt) + φ′(ε̂t)(γ1 − γ̂(φ))] +

[ns]∑
t=[nτ]+1

[φ(εt) + φ′( ˆ̂ε)(γ2 − µ̂(φ))]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
[ns]∑
t=1

φ(εt) + (γ1 − γ̂(φ))
[nτ]∑
t=1

φ′(ε̂t) + (γ2 − γ̂(φ))
[ns]∑

t=[nτ]+1

φ′( ˆ̂εt)

∣∣∣∣∣∣∣ ,
where ε̂t ∈ (εt, εt + |γ1 − γ̂(φ)|), and ˆ̂εt ∈ (εt, εt + |γ2 − γ̂(φ)|). Since the second and third terms play a
major role in the convergent rate Op(n), it follow that

max
0≤s≤1

∣∣∣∣∣∣∣
[ns]∑
t=1

φ(ωt − γ̂(φ))

∣∣∣∣∣∣∣ = Op(n). (2.35)

Now, we deal with the first term of the denominator.
(i) If 1 ≤ [nv] ≤ [nτ], we have

[nv]∑
i=1

φ(ωi − γ̂1(φ)) =

[nv]∑
i=1

φ(εi) + (γ1 − γ̂1(φ))
[nv]∑
i=1

φ′(ε̃∗i )

= Op(n1/2) + Op(1) × Op(n) = Op(n),

where ε̃∗i ∈ (εi, εi ± |(γ1 − γ̂1(φ))|).
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(ii) If [nτ] + 1 ≤ [nv] ≤ [ns],

[nv]∑
i=1

φ(ωi − γ̂1(φ)) =

[nτ]∑
i=1

φ(εi + (γ1 − γ̂1(φ))) +

[nv]∑
i=[nτ]+1

φ(εi + (γ2 − γ̂1(φ)))

=

[nv]∑
i=1

φ(εi) + (γ1 − γ̂1(φ))
[nτ]∑
i=1

φ′(ε̂∗i ) + (γ2 − γ̂1(φ))
[nv]∑

i=[nτ]+1

φ′(ε̂∗∗i )

= Op(n1/2) + Op(n) = Op(n),

where ε̂∗i ∈ (εi, εi ± |(γ1 − γ̂1(φ))|), ε̂∗∗i ∈ (εi, εi ± |(γ2 − γ̂2(φ))|). Hence, we obtain

max
1≤[nv]≤[ns]

∣∣∣∣∣∣∣
[nv]∑
i=1

φ(ωi − γ̂1(φ))

∣∣∣∣∣∣∣ = Op(n). (2.36)

For the second term of the denominator, its asymptotic disbribution is the same as the null
hypothesis, because data ω[ns]+1, · · · , ωn are free of the influnence caused by the change-point. Thus,
we have

max
[ns]+1≤[nv]≤n

∣∣∣∣∣∣∣
n∑

i=[nv]+1

φ(ωi − γ̂2(φ))

∣∣∣∣∣∣∣ = Op(n1/2). (2.37)

Combining (20)–(22), we end up with max
0≤s≤1

Vn = Op(1). When s ∈ (0, τ− θ), we can similarly prove

that max
0≤s≤1

Vn = Op(1). Finally, when s ∈ (τ − θ, τ + θ), we just consider the special case of s = τ.

Since both ot the two sets ω1, · · · , ω[ns] and ω[ns]+1, · · · , ωn are not affected by the mean change, the
asymptotic distribution of the denominator is the same as in Theorem 2.1. However, the numerator
always diverges. Consequently, we get

Vn ≥ Vn(τ) =
Op(n)

Op(n1/2) + Op(n1/2)
= Op(n1/2).

Therefore, the proof is complete.
According to Theorem 2.2, the ratio-typed test is consistent under the alternative hypothesis.

However, unlike the result provided in Theorem 2.1, a closed-form asymptotic distribution cannot be
obtained due to the unknown explicit expression of the objective function for M-estimation. The
simulation study has revealed an intriguing finding that the divergence appears to be independent of
the tail index in theory, yet it significantly affects the validity in practice.

3. Simulation results

In this section, we present simulation results to investigate the performance of the ratio-typed test
V on empirical sizes and empirical powers using LS-estimation and M-estimation, i.e., φLS (x) = x and
φM(x) = xI{|x| ≤ K} + Ksgn(x)I{|x| > K}. The validity of the theory will be verified by the portfolio
of the change position, magnitude of the change-point, tail index, window width, lag number and so
on. Empirical sizes refer to the rejection rates at a significance level of 0.05 under the null hypothesis,
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while empirical powers denote rejection rates in the presence of a change-point. All results are based
on 2000 replications.

We adopt the following DGP (data generating process):

yt = µ + βt + ξt,

ξt = c1ξt−11{t≤[Tτ]} + (c1 + δ)ξt−11{t>[Tτ]} + ηt,

where ηt is a heavy-tailed sequence. The remaining parameters are set as follows: threshold value
K = 1.345; autoregressive coefficient c1 = −0.3, 0, 0.3; sample size T = 300, 600, 1200; tailed index
κ = 0.4, 0.8, 1.2, 1.6, 2.0; intercept and slope µ = 5, β = 0.2; change position τ = 0, 0.3, 0.5, 0.7;
magnitude of change δ = 0.3, 0.6; window width m = 10, 20, 30; and lag number d = 1, 2, 3, 10, 15, 25.

3.1. Asymptotic critical values

In this subsection, our objective is to discuss the critical values of the ratio-typed test. Critical
values of M-estimation and LS-estimation corresponding to changes in the tail index under different
coefficients c1 are obtained and presented in Table 1.

Table 1. Simulated critical values under H0.

VM VLS

κ c1 = −0.3 c1 = 0 c1 = 0.3 c1 = −0.3 c1 = 0 c1 = 0.3
0.4 1.4345 1.4484 1.4031 1.5156 1.5288 1.5346
0.8 1.4078 1.4139 1.4176 1.5084 1.4957 1.5175
1.2 1.4421 1.4291 1.4266 1.4799 1.4756 1.4690
1.6 1.4298 1.4011 1.4133 1.4308 1.4377 1.4295
2.0 1.4125 1.4153 1.4379 1.4286 1.4085 1.4190

For the sake of simplicity, VM is defined as a ratio-typed test based on M-estimation with Huber
function, and the definition of VLS relies on LS-estimation. It is not surprising that the simulated critical
values of VLS are functional to tail index κ, whereas this phenomenon does not occur in VM. That is
consistent with the conclusion of Jin et al. [36, 37]. It is noteworthy that critical values of two test
statistics are not sensitive to the variations in c1. Thus, for the VLS test, prior estimation of the tail index
is necessary to conduct change-point tests with corresponding critical values. However, accurately
estimating the unknown and elusive tail index in practical applications remains challenging. On the
other hand, the simulated critical value of VM shows minimal fluctuations, which greatly facilitates its
practical application.

3.2. Empirical sizes and empirical powers

In this subsection, we aim to investigate empirical sizes and empirical powers of ratio-typed tests
under various profiles of sample size, score function, change position, window width, and lag number.
Figure 2 illustrates the curve of empirical sizes for VM and VLS under the null hypothesis, where the
x-axis represents the tail index and the y-axis represents empirical sizes.

The empirical sizes of VM, as shown in Figure 2, have greater stability compared to that of VLS ,
because they nearly fluctuate around the 0.05 confidence level. It is notable that, the rejection rate of
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VM performs well regardless of the window width, but for VLS , the empirical sizes are sensitive to the
window width. When m = 10, there is a slight distortion, but the distortion becomes more pronounced
as the window width expands to 20 and 30, which indicates that the rejection rate is unstable with larger
window widths, in particular T = 300. It means that when sample size is small, the increase in window
width may result in a slight growth of distortion. The reason for this is that a larger amount of data
within each window is more prone to outliers, which in turn triggers an over-rejection. However, as
the sample size increases, empirical sizes approach satisfactory and fluctuate around the significance
level. There is no significant difference in empirical sizes when various lag numbers are considered.
In short, the rejection rate of VLS is higher for a smaller sample size with a larger tail index, while
the phenomenon does not occur for VM. These results indicate that the convergence rate estimated by
M-estimation is independent of tail thickness, as confirmed by Lemmas 2.1 and 2.2.
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(c) T = 1200, m = 10
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(d) T = 300, m = 20
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(e) T = 600, m = 20
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(f) T = 1200, m = 20
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(g) T = 300, m = 30
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(h) T = 600, m = 30
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(i) T = 1200, m = 30

Figure 2. Empirical sizes of VM and VLS under H0.

Figures 3–5 show the sensitivity analysis of the ratio-typed test under the alternative hypothesis, in
terms of sample size, tail index, window width, lag number, change location, and magnitude of change.
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With an increase in the tail index, there is a decrease in the empirical powers of VM, while there is an
increase in those of VLS . The ratio-typed test based on M-estimation appears to have a higher level of
empirical powers if κ ≤ 1.4, while the test based on LS-estimation exhibits larger empirical powers if
κ > 1.4. The Huber function truncates outliers to normality, by which the M-estimation enables more
accurate estimation in heavy-tailed sequences while it involves more bias in light-tailed observations.
This indicates that M-estimation is better suited for heavy-tail sequences. As expected, both tests have
excellent performance on empirical powers with sample size growth, for example, when τ = 0.5 and
κ = 1.6 for m = 20 and d = 1, the rejection rates of VM are 80.7%, 93.2%, and 99.35%, respectively,
for T = 300, 600, 1200.
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(a) T = 300, m = 10, d = 1, δ = 0.3
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(b) T = 600, m = 10, d = 1, δ = 0.3
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(c) T = 1200, m = 10, d = 1, δ = 0.3
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(d) T = 300, m = 20, d = 1, δ = 0.3
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(e) T = 600, m = 20, d = 1, δ = 0.3
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(f) T = 1200, m = 20, d = 1, δ = 0.3
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(g) T = 300, m = 30, d = 1, δ = 0.3
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(h) T = 600, m = 30, d = 1, δ = 0.3
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(i) T = 1200, m = 30, d = 1, δ = 0.3

Figure 3. Empirical powers of VM and VLS under H1.

It is interesting that, compared to that of τ = 0.3 and τ = 0.7, the empirical powers exhibit superior
performance when τ = 0.5 for both VM and VLS . Furthermore, it is found that a wider window width
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leads to larger empirical powers when the lag number is fixed. For example, when d = 1, τ = 0.5, and
T = 600, if the window width m is 10, the empirical powers obtained from M-estimation are 99.95%,
99.2%, 93.3%, 83.55%, and 72.85% under various tail indices, while the empirical powers are 100%,
99.35%, 97.8%, 93.2%, and 87.8% when m = 20. The empirical powers still remain insensitive to
the lag number when the window width is fixed. When m = 30, τ = 0.7, T = 300, and d = 1, the
empirical powers based on M-estimation are 98.2%, 93%, 85.4%, 76.8%, and 69.1%; but for d = 2,
the empirical powers are 96.35%, 92.25%, 85%, 75.15%, and 67.75%. This highlights the criticality
of selecting an appropriate window width.

.
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(b) T = 600, m = 10, d = 2, δ = 0.3
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(c) T = 1200, m = 10, d = 2, δ = 0.3
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(d) T = 300, m = 20, d = 2, δ = 0.3
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(e) T = 600, m = 20, d = 2, δ = 0.3
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(f) T = 1200, m = 20, d = 2, δ = 0.3
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(g) T = 300, m = 30, d = 2, δ = 0.3
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(h) T = 600, m = 30, d = 2, δ = 0.3
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(i) T = 1200, m = 30, d = 2, δ = 0.3

Figure 4. Empirical powers of VM and VLS under H1.

The relationship between empirical powers and lag numbers d = 1, 2, 3 is present in Figures 3–5.
The line charts reveal an intuitive result that there is a slight difference in the empirical powers when
the lag number is small. Therefore, to account for the impact of lag numbers on empirical powers, we
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consider three distinct lag numbers with d = 10, 15, 25. As depicted in Figure 6, the empirical powers
decrease as the lag number increases. For example, when κ = 0.8, τ = 0.3, T = 1200, and m = 20,
empirical powers of VM are 80.52%, 76.12%, and 57.38% for d = 10, 15, 25. This phenomenon is
attributed to the sample size of the mean change-point test reduction caused by a larger lag number and
a smaller window width.
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(a) T = 300, m = 10, d = 3, δ = 0.3
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(b) T = 600, m = 10, d = 3, δ = 0.3
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(c) T = 1200, m = 10, d = 3, δ = 0.3
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(d) T = 300, m = 20, d = 3, δ = 0.3
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(e) T = 600, m = 20, d = 3, δ = 0.3
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(f) T = 1200, m = 20, d = 3, δ = 0.3
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(g) T = 300, m = 30, d = 3, δ = 0.3
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(h) T = 600, m = 30, d = 3, δ = 0.3
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(i) T = 1200, m = 30, d = 3, δ = 0.3

Figure 5. Empirical powers of VM and VLS under H1.

Recall that empirical powers decrease with an increase in lag numbers; therefore, we choose a
relatively optimal lag number of d = 3 and explore window widths of m = 10, 20, 30 to analyze
calculation efficiency. Actually, when the sample size is large, d = 3 can be selected due to
computation cost reduction. However, when the sample size is small, we choose d = 1 as the optimal
lag number to ensure no loss of samples and maximize the change-point test efficiency. Figures 2–7
indicate that when m = 30, both VM and VLS obtain outstanding empirical power. Consequently, we
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adopt m = 30 as the optimal window width in the practical example. In other words, the empirical
powers of the ratio-typed test based on M-estimation are higher than those of the ratio-typed test
based on LS-estimation, especially in the case of heavy-tailed sequences.
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(a) T = 300, m = 30, d = 10, δ = 0.3
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(b) T = 600, m = 30, d = 10, δ = 0.3
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(c) T = 1200, m = 30, d = 10, δ = 0.3
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(d) T = 300, m = 30, d = 15, δ = 0.3
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(f) T = 1200, m = 30, d = 15, δ = 0.3
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Figure 6. Empirical powers of VM and VLS under H1.

Figures 3–6 report the simulated results of δ = 0.3, and we also are interested in the case of δ =

0.6. As shown in Figure 7, it is not surprising that empirical powers enhance with the growth in δ.
Additionally, when δ = 0.3, empirical powers tend to decrease as τ is far away from the middle of the
sample. But for δ = 0.6, the difference in empirical powers is very small no matter whether τ = 0.3,
τ = 0.5, or τ = 0.7. In other words, when δ is large, the influence of the change position on the
empirical power is negligible.
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(c) T = 1200, m = 10, d = 3, δ = 0.6
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(d) T = 300, m = 20, d = 3, δ = 0.6
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(f) T = 1200, m = 20, d = 3, δ = 0.6
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Figure 7. Empirical powers of VM and VLS under H1.

4. Empirical applications

In this section, the ratio-typed test based on M-estimation is used to test the QAC change in
USD/CNY exchange rate data, by which the validity of the aforementioned method is confirmed.
Figure 8(a) shows a total of 581 daily data points of the USD/CNY exchange rate from May 12, 2009
to August 31, 2011, which were drawn from https://www.economagic.com. Through the use of
software [38] to find the rough estimate of the tail index, we have κ̂ = 1.0515. Thus, we suppose that
this set of exchange rate data is yt = µ + βt + ξt, t = 1, 2, . . . 581, where innovation ξt is heavy-tailed.
In view of this, the test statistics in [23–25] for the change in correlation coefficients detection are
invalidated, because this method requires long-run variance estimation, which is difficult and
redundant for heavy-tailed sequences.

Note that the method proposed in this paper not only avoids long-term variance estimation, but
also expands the application range and greatly improves practicability and convenience by converting
the change in the autocorrelation coefficient into the change in mean. For a mean change problem,
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we provide the ratio-typed test based on M-estimation to execute for the heavy-tailed series. The
exchange rate sequence yt is detrended in advance. The intercept and the slope are estimated through
M-estimation, resulting in ξ̂t = yt − µ̂ − β̂t, t = 1, 2, . . . , 581, where µ̂ = 6.9401 and β̂ = −0.00078. The
residuals ξ̂t are depicted in Figure 8(b). Thus, we set d = 1 and m = 30, and get a new sequence ωt

composed of 550 QAC structure, as shown in Figure 9.
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(b) The residuals series

Figure 8. Daily exchange rate data and residuals sequence.

By BIC or AIC criteria, the QAC data ωt is fitted by the the mean model, namely, ωt = γ + εt, t =

1, 2, . . . , 550. We substitute the ωt sequence into the ratio-typed test based on M-estimation, and find
VM = 3.6375 > 1.4133 at s∗ = 348. That is, ωt occured a change in mean at s∗ = 348 (the red dashed
line in Figure 9), and is divided into two segments. The first part is γ1, γ2, . . . , γ348 with a sample mean
of γ∗1 = 0.9155, and the second one involves γ349, γ350, . . . , γ580 with a sample mean of γ∗2 = 0.6373.
The standard error of the mean estimate based on M-estimation is 0.0075, which indicates that our
proposed method is highly reliable. By this, we verify that the daily data of the USD/CNY exchange
rate yt from May 12, 2009 to August 31, 2011 has a change in the autocorrelation coefficient.
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Figure 9. The QAC sequence.
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5. Conclusions

In this paper, we primarily studied the change-point test of the QAC for heavy-tailed sequences. In
order to improve the efficiency, the moving window method was used to convert the QAC change to
the mean change, and the ratio-typed test based on M-estimation was proposed to test the mean change.
The methods not only eliminated the influence of outliers, but also extended the theory on QAC change
detection of Gaussian sequences to heavy-tail process with tail index κ ∈ (0, 2). Under some regular
conditions, the asymptotic distribution under the null hypothesis was a functional of a Wiener process,
which was independent of the tail index, and the consistency was also obtained under the alternative
hypothesis. The simulation results revealed that these procedures have good performance even if the
sequence was heavy-tailed. In summary, we can combine the moving window method with a ratio-
typed test based on M-estimation to test the change in the QAC with a heavy-tailed series.
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