This work presents a numerical approach for handling a fractional Lienard equation (FLE) arising in an oscillating circuit. The scheme is based on the Vieta Lucas operational matrix of the fractional Liouville-Caputo derivative and the collocation method. This methodology involves a systematic approach wherein the operational matrix aids in expressing the fractional problem in terms of non-linear algebraic equations. The proposed numerical approach utilizing the operational matrix method offers a vital solution framework for efficiently tackling the fractional Lienard equation, addressing a key challenge in mathematical modeling. To analyze the fractional order system, we derive an approximate solution for the FLE. The solutions are explained graphically and in tabular form.
Citation: Jagdev Singh, Jitendra Kumar, Devendra Kumar, Dumitru Baleanu. A reliable numerical algorithm for fractional Lienard equation arising in oscillating circuits[J]. AIMS Mathematics, 2024, 9(7): 19557-19568. doi: 10.3934/math.2024954
This work presents a numerical approach for handling a fractional Lienard equation (FLE) arising in an oscillating circuit. The scheme is based on the Vieta Lucas operational matrix of the fractional Liouville-Caputo derivative and the collocation method. This methodology involves a systematic approach wherein the operational matrix aids in expressing the fractional problem in terms of non-linear algebraic equations. The proposed numerical approach utilizing the operational matrix method offers a vital solution framework for efficiently tackling the fractional Lienard equation, addressing a key challenge in mathematical modeling. To analyze the fractional order system, we derive an approximate solution for the FLE. The solutions are explained graphically and in tabular form.
[1] | A. Lienard, Etude des oscillations entretenues, Rev. Gén. Electr., 23 (1928), 901–912. |
[2] | J. Guckenheimer, Dynamics of the Van der Pol equation, IEEE Trans. Circuits Syst., 27 (1980), 983–989. https://doi.org/10.1109/TCS.1980.1084738 doi: 10.1109/TCS.1980.1084738 |
[3] | Z. Wei, S. Kumarasamy, M. Ramasamy, K. Rajagopal, Y. Qian, Mixed-mode oscillations and extreme events in fractional-order Bonhoeffer-van der Pol oscillator, Chaos, 33 (2023), 093136. https://doi.org/10.1063/5.0158100 doi: 10.1063/5.0158100 |
[4] | Z. Feng, On explicit exact solutions for the Lienard equation and its applications, Phys. Lett. A, 293 (2002), 50–56. https://doi.org/10.1016/S0375-9601(01)00823-4 doi: 10.1016/S0375-9601(01)00823-4 |
[5] | D. Kong, Explicit exact solutions for the Lienard equation and its applications, Phys. Lett., 196 (1994), 301–306. https://doi.org/10.1016/0375-9601(94)91089-8 doi: 10.1016/0375-9601(94)91089-8 |
[6] | J. Singh, A. Gupta, D. Baleanu, On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations, Alex. Eng. J., 61 (2022), 5073–5082. https://doi.org/10.1016/j.aej.2021.09.053 doi: 10.1016/j.aej.2021.09.053 |
[7] | A. H. Bharawy, M. M. Tharwat, M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc., 37 (2014), 983–995. |
[8] | D. Kumar, V. P. Dubey, S. Dubey, J. Singh, A. M. Alshehri, Computational analysis of local fractional partial differential equations in realm of fractal calculus, Chaos Solitons Fractals, 167 (2023), 113009. https://doi.org/10.1016/j.chaos.2022.113009 doi: 10.1016/j.chaos.2022.113009 |
[9] | K. Saad, A different approach for the fractional chemical model, Rev. Mex. Fís., 68 (2022), 011404. https://doi.org/10.31349/revmexfis.68.011404 doi: 10.31349/revmexfis.68.011404 |
[10] | P. Pandey, S. Kumar, H. Jafari, S. Das, An operational matrix for solving time-fractional order Cahn-Hilliard equation, Therm. Sci., 23 (2019), 2045–2052. https://doi.org/10.2298/TSCI190725369P doi: 10.2298/TSCI190725369P |
[11] | J. Singh, A. Gupta, D. Kumar, Computational analysis of the fractional Riccati differential equation with Prabhakar-type memory, Mathematics, 11 (2023), 644. https://doi.org/10.3390/math11030644 doi: 10.3390/math11030644 |
[12] | J. Singh, J. Kumar, D. Kumar, D. Baleanu, A reliable numerical algorithm based on an operational matrix method for treatment of a fractional order computer virus model, AIMS Mathematics, 9 (2024), 3195–3210. https://doi.org/10.3934/math.2024155 doi: 10.3934/math.2024155 |
[13] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, Elsevier, 198 (1993), 1–340. |
[14] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993. |
[15] | H. Singh, J. Singh, S. D. Purohit, D. Kumar, Advanced numerical methods for differential equations: Applications in science and engineering, CRC Press, 2021. https://doi.org/10.1201/9781003097938 |
[16] | M. Matinfar, M. Mahdavi, Z. Raeisy, Exact and numerical solution of Liénard's equation by the variational homotopy perturbation method, J. Inf. Comput. Sci., 6 (2011), 73–80. |
[17] | M. Matinfar, H. Hosseinzadeh, M. Ghanbari, A numerical implementation of the variational iteration method for the Lienard equation, World J. Model. Simul., 4 (2008), 205–210. |
[18] | D. Kumar, R. P. Singh, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 339 (2018), 405–413. https://doi.org/10.1016/j.cam.2017.03.011 doi: 10.1016/j.cam.2017.03.011 |
[19] | H. Singh, Solution of fractional Lienard equation using Chebyshev operational matrix method, Nonlinear Sci. Lett. A, 8 (2017), 397–404. |
[20] | H. Singh, H. M. Srivastava, Numerical investigation of the fractional-order Liénard and Duffing equations arising in oscillating circuit theory, Front. Phys., 8 (2020), 120. https://doi.org/10.3389/fphy.2020.00120 doi: 10.3389/fphy.2020.00120 |
[21] | H. Singh, An efficient computational method for non-linear fractional Lienard equation arising in oscillating circuits, CRC Press, 2019. |
[22] | J. Singh, A. M. Alshehri, Sushila, D. Kumar, Computational analysis of fractional Liénard's equation with exponential memory, J. Comput. Nonlinear Dynam., 18 (2023), 041004. https://doi.org/10.1115/1.4056858 doi: 10.1115/1.4056858 |
[23] | Z. A. Noor, I. Talib, T. Abdeljawad, M. A. Alqudah, Numerical study of Caputo fractional-order differential equations by developing new operational matrices of Vieta-Lucas polynomials, Fractal Fract., 6 (2022), 79. https://doi.org/10.3390/fractalfract6020079 doi: 10.3390/fractalfract6020079 |
[24] | E. Kreyszig, Introductory functional analysis with applications, Wiley, 1991. |
[25] | T. J. Rivlin, An introduction to the approximation of functions, Dover Publications, 2010. |
[26] | W. Al-Sadi, Z. Wei, I. Moroz, A. Alkhazzan, Existence and stability of solution in Banach space for an impulsive system involving Atangana-Baleanu and Caputo-Fabrizio derivatives, Fractals, 31 (2023), 2340085. https://doi.org/10.1142/S0218348X23400856 doi: 10.1142/S0218348X23400856 |
[27] | S. S. Ezz-Eldien, A. A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems with right-sided Caputo fractional derivative, J. Comput. Nonlinear Dynam., 13 (2018), 011010. https://doi.org/10.1115/1.4037597 doi: 10.1115/1.4037597 |
[28] | S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2017), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045 doi: 10.1016/j.jcp.2016.04.045 |