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Abstract: This work presents a numerical approach for handling a fractional Lienard equation
(FLE) arising in an oscillating circuit. The scheme is based on the Vieta Lucas operational matrix
of the fractional Liouville-Caputo derivative and the collocation method. This methodology involves
a systematic approach wherein the operational matrix aids in expressing the fractional problem in
terms of non-linear algebraic equations. The proposed numerical approach utilizing the operational
matrix method offers a vital solution framework for efficiently tackling the fractional Lienard equation,
addressing a key challenge in mathematical modeling. To analyze the fractional order system, we
derive an approximate solution for the FLE. The solutions are explained graphically and in tabular
form.
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1. Introduction

In the advancement of radio and vacuum tube technology, the Lienard equation is used to explain
an oscillating circuit, so it has received extensive attention from researchers. The Lienard equation is a
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nonlinear differential equation of second order and is expressed as [1]

z′′(η) + κ1(z)z′(η) + κ2(z) = κ3(η), (1.1)

where, κ2(z) is restoring force, κ1(z)z′ is a damping force and κ3(η) is an external force. The Lienard
model exists in many physical phenomena for various options of κ1(z), κ2(z) and κ3(η) [2, 3].

It is highly complicated to acquire exact solutions [4] of these nonlinear equations by conventional
methods. Kong conducted an investigation into the particular structure of the Lienard model [5],

z′′(η) + cz′(η) + dz3(η) + ez5(η) = 0, (1.2)

where c, d and e are real constants.
Fractional derivatives allow for the precise identification of a physical phenomenon’s perfect model,

which depends on both the present and a prior time. In addition, there are several practical applications
for fractional calculus in the fields of science and engineering [6–12]. Exploring textbooks, research
papers, online courses and attending seminars or workshops can provide valuable insights into the
practical applications of fractional calculus. Additionally, experimenting with software tools and
numerical methods tailored for fractional calculus computations can offer hands-on experience and
deepen comprehension of its real-world implementation [13–15]. The fractional Lienard equation
is pivotal in analyzing oscillating circuits, representing the dynamics of voltage and current with
fractional derivatives, crucial for understanding complex electrical systems and signal processing
applications. The fractional operators are of non-local type, so they contain previous memory of the
system. To study this system, we substitute the Liouville-Caputo derivative for the classical derivative
in the Lienard equation. This substitution yields the FLE, which is formulated as follows:

zα(η) + cz′(η) + dz3(η) + ez5(η) = 0, 1 < α ≤ 2, η ∈ [0, 1], (1.3)

with
z(0) = σ, z′(0) = δ, (1.4)

initial conditions and σ, δ ∈ R.
Kong [5] examined the classical Lienard equation and acquired the exact solution for specific values

of constants c, d and e. Feng generalized Kong’s outcome for the FLE [4]. For the approximate
solutions of the Lienard equation, Matnifar et al. [16,17] suggested a variational homotopy perturbation
technique and variational iteration method. To solve the FLE, Singh et al. [18] suggested a numerical
approach by using the homotopy analysis transform technique.

The operational matrix method is an extremely efficient method for solving differential calculus
problems. Advancements in the operational matrix method for arbitrary order differential equations
include refined techniques like the Caputo and Riemann-Liouville fractional derivatives. These
methods enhance accuracy and efficiency, especially in complex systems. Integration with other
numerical approaches further extends its applicability, facilitating precise solutions for a wide range
of fractional differential equations. Singh [19] obtained an approximate solution of the FLE by using
Chebyshev operational matrix method. The FLE has been solved numerically by using an operational
matrix of Legendre scaling polynomials and Jacobi polynomials [20,21]. Singh et al. [22] investigated
the FLE with exponential memory.
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We provide a approximate technique to solve FLE in this work. For Vieta Lucas polynomials
(VLPs), the proposed method merges the collocation technique with the operational matrix method.
This combination produces a system of nonlinear algebraic equations (NLAEs) and solving these
equations provides an approximate solution to the FLE. The solution’s behavior is demonstrated for
various fractional orders related to the FLE.

The organization of this article is outlined as follows: Section 2 offers a fundamental definition of
fractional calculus and properties of Vieta Lucas polynomials. The computational procedure of the
method is introduced in Section 3. Moving on to Section 4, we analyze the suggested technique for
solving arbitrary order Lienard model. We present and discuss numerical results in Section 5. We give
concluding remarks in Section 6.

2. Preliminaries

In this study, we employed the Liouville-Caputo type derivative of arbitrary order.

Definition 2.1. The Liouville-Caputo derivative of fractional order α ≥ 0 is provided [14]:

(Dαg( η)) =

 1
Γ(l−α)

∫ η

0
(η − t)l−α−1 dl

dtl g(t)dt, l − 1 < α < l.
dl

dηl g(η), α = l ∈ N.
(2.1)

Definition 2.2. For α > 0 and g(η) ∈ H1(c, d) where H1(c, d) is the space of all integrable functions on
(c, d), the Riemann-Liouville fractional integral of order α, indicated by Iα0 , is provided by

Iα0 g(η) =
1

Γ(α)

∫ η

0
(η − t)α−1g(t)dt.

2.1. VLPs

For the shifted VLPs on [0, 1], the analytical form is [23],

Ωn(η) = 2n
n∑

J=0

(−1)J4n−J(2n − J − 1)!
J!(2n − 2J)!

ηn−J; n ≥ 1, (2.2)

with Ω0(η) = 2.
It is feasible to extend the function g described in L2[0, 1] as an infinite sum of the shifted VLPs

with |g”(η)| ≤ K:

g(η) = lim
q→∞

q∑
i=0

piΩi(η), (2.3)

where

pi =
1
θiπ

∫ 1

0
g(η)Ωi(η)ρ(η)dη; i = 0, 1, 2, . . . , ρ(η) =

1√
η − η2

, θ0 = 4 and θi = 2(i ≥ 1). (2.4)

Using Eq (2.3)’s finite dimension approximations, we obtain

g(η) �
n∑

i=0

aiΩi(η) = PT Ωn(η), (2.5)
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where the (n + 1) × 1 matrices Ωn(η) and P are represented by

P =
[
p0, p1, . . . ., pn

]T and Ωn(η) =
[
Ω0(η),Ω1(η), . . . .Ωn(η)

]T . (2.6)

2.2. Vieta Lucas operational matrix for fractional derivative

Theorem 2.1. If Ωn(η) =
[
Ω0(η),Ω1(η), . . . . . . .,Ωn(η)

]T is the VLP vector and α > 0, then

DαΩi(η) = D(α)Ωn(η), (2.7)

where D(α) is (n + 1) × (n + 1) operational matrix of Liouville-Caputo derivative of arbitrary order α
and is explicitly formulated as follows [23]:

D(α) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0∑i−dαe
k=0 ξi,0,k

∑i−dαe
k=0 ξi,1,k · · ·

∑i−dαe
k=0 ξi,m,k

...
... · · ·

...∑m−dαe
k=0 ξm,0,k

∑m−dαe
k=0 ξm,1,k · · ·

∑m−dαe
k=0 ξm,m,k


and ξi, j,k is given by

ξi, j,k =


i
∑i−dαe

k=0 (−1)k 4i−kΓ(2i−k)Γ(i−k+1)Γ(i−k−α+1/2)
√
πΓ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)2 , j = 0,

2i
∑i−dαe

k=0

∑ j
r=0

(−1)k+r
√
π

4i−kΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)

×
4 j−rΓ(2 j−r)Γ(i+ j−k−r−α+1/2)

Γ(r+1)Γ(2 j−2r+1)Γ(i+ j+k−r−α+1) , j = 1, 2, 3, . . .

Proof. Please see [23]. �

3. Computational procedure of the method

We suggest an approach for the approximate solution of the FLE in this section.
Step 1. For the unknown function in the FLE, the following approximation is created using Eq (2.5):

z(η) =

n∑
i=0

piΩi(η) = PT Ωn(η). (3.1)

Step 2. Using Eq (3.1) in FLE (1.3), we obtain

PT D(α)Ωn(η) + cPT D(1)Ωn(η) + d
(
PT Ωn(η)

)3
+ e

(
PT Ωn(η)

)5
= 0, (3.2)

where operational matrix of differentiations of order α and 1 are represented by D(α) and D(1)

accordingly and can obtained by Eq (2.7).
Step 3. The residual for Eq (3.2) is

Rn(η) = PT D(α)Ωn(η) + cPT D(1)Ωn(η) + d
(
PT Ωn(η)

)3
+ e

(
PT Ωn(η)

)5
. (3.3)

AIMS Mathematics Volume 9, Issue 7, 19557–19568.



19561

Step 4. Now collocate n − 1 points in Eq (3.3) given by ηi = i/n, i = 0, 1, 2, 3, . . . , n − 2.
By Eqs (1.4), (3.1) and (3.3), we find

Rn(ηi) = PT D(α)Ωn(ηi) + cPT D(1)Ωn(ηi) + d
(
PT Ωn(ηi)

)3
+ e

(
PT Ωn(ηi)

)5
= 0, (3.4)

PT Ωn(0) = σ, PT D(1)Ωn(0) = δ. (3.5)

Step 5. We obtain a system of (n + 1) NLAEs. The solution of these equations provides the
approximation’s unknowns by using collocation points in Eqs (3.4) and (3.5). The approximate
solution for the FLE is obtained utilizing these unknowns in Eq (3.1).

4. Error analysis of the scheme

Theorem 4.1. Let the function z : [0, 1]→ R, z ∈ C(n+1)[0, 1] and zn(t) represents the nth approximation
obtained by employing VLP. Then

Eh
z,n = ‖z − zn‖L2

δ[0,1] , (4.1)

and as n→ ∞, Eh
z,n approaches 0.

Proof. See [23]. �

Theorem 4.2. Consider H as a Hilbert space, with X being a closed subspace of H s.t. dim X < ∞

and {x1, x2, · · · , xM} is any basis for X. Let z be an arbitrary element in H and x0 be the unique best
approximation to z out of X. Then,

‖z − x0‖
2
2 =

G (z; x1, x2, . . . , xM)
G (x1, x2, . . . , xM)

,

where

G (z; x1, x2, . . . , xM) =

∣∣∣∣∣∣∣∣∣∣∣∣
〈z, z〉 〈z, x1〉 · · · 〈z, xM〉

〈x1, z〉 〈x1, x1〉 · · · 〈x1, xM〉
...

...
. . .

...

〈xM, z〉 〈xM, x1〉 · · · 〈xM, xM〉

∣∣∣∣∣∣∣∣∣∣∣∣ .
Proof. Please see [24, 25]. �

Theorem 4.3. Consider a function g ∈ L2[0, 1], is approximated as in Eq (2.5) by fM(η) as

fM(η) =

M∑
k=0

PkΩk(η).

Consider S M(g) =
∫ 1

0

[
g(η) − fN(η)

]2 dη. Then, we have limM→∞ S M(g) = 0.

Proof. Please see [24–26]. �

Theorem 4.4. If Eα,h
D,n represents the error vector for operational matrix of differentiation of α order,

obtained by utilizing (n + 1) VLPs, then in this scenario, we have

Eα,h
D,n = D(α)Ωn(η) − DαΩn(η), (4.2)

tending to 0 as n→ ∞.
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Proof. Consider Eα,h
D,n is the error of an operational matrix of the Liouville-Caputo operator of fractional

order. Then,
Eα,h

D,n = D(α)Ωn(η) − DαΩn(η),

and
Eα,h

D,n =
[
Eα,h

D,0, E
α,h
D,1, · · · , E

α,h
D,n

]T
.

By approximating (η)i−k−α as in Eq (2.5) and from Theorem 4.2,∥∥∥∥∥∥∥(η)i−k−α −

m∑
j=0

P jΩn(η)

∥∥∥∥∥∥∥
2

=

G
(
(η)i−k−α; Ω0(η), · · · ,Ωn(η)

)
G (Ωo(η),Ω1(η) · · · ,Ωn(η))


1
2

. (4.3)

In virtue of Eqs (2.7), (4.2), and (4.3), we have

∥∥∥Eα,h
D,n

∥∥∥
2

=

∥∥∥∥∥∥∥DαΩn(η) −
n∑

j=0

ξi, j,kΩn(η)

∥∥∥∥∥∥∥
2

≤2i
i−dαe∑
k=0

∣∣∣∣∣∣ (−1)k4i−kΓ(2i + 1)Γ(i − k + 1)
Γ(2i − 2k + 1)Γ(k + 1)Γ(i − k − α)

∣∣∣∣∣∣
×

G
(
(η)i−k−α; Ω0(η), · · · ,Ωn(η)

)
G (Ω0(η),Ω1(η), · · · ,Ωn(η))


1
2

, 0 ≤ i ≤ n.

(4.4)

By Eq (4.4) with use of results (4.2) and (4.3), it is easily interpreted that as n increases, Eα,h
D,n tends to

zero.
Suppose that Un is the n-dimensional subspace generated by (Ωi)0≤i≤n for L2

h[0, 1]. Let ωn be the
infimum of the functional on the space Un. Then, it can be expressed as:

Un ⊂ Un+1 and ωn+1 ≥ ωn.

�

Theorem 4.5. Let L denote the functional. Then,

lim
n→∞

ωn(η) = ω(η) = inf
η∈[0,1]

L(η).

Proof. See [27, 28]. �

For the FLE, the functional is

N(η) = Dαz(η) + cD′z + dz3 + ez5 = 0. (4.5)

Using Eqs (3.1)–(3.4), we get

N(E)(η) =PT D(α)Ωn(η) + Eα,h
D,n + cPT D(1)Ωn(η) + cE1,h

D,n

+ d
(
PT Ωn(η + Eh

z,n

)3
+ e

(
PT Ωn(η) + Eh

z,n

)5
,

(4.6)

where
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Eh
z,n = PT Ω(η) − PT Ωn(η), (4.7)

Eα,h
D,n = D(α)Ωn(η) − DαΩn(η), (4.8)

E1,h
D,n = D(1)Ωn(η) − D1Ωn(η). (4.9)

We have the residual for Eq (4.6),

R(E)
n (η) =PT D(α)Ωn(η) + Eα,h

D,n + cPT D(1)Ωn(η) + cE1,h
D,n

+ d
(
PT Ωn(η) + Eh

z,n

)3
+ e

(
PT Ωn(η) + Eh

z,n

)5
.

(4.10)

Now, collocating n − 1 points in Eq (4.10) by ηi = i
n , i = 0, 1, 2, . . . , n − 2, we determine

R(E)
n (ηi) = 0. (4.11)

A system of NLAEs is obtained by combining Eq (3.5) with the collocation points in Eq (4.10). The
solution for this system yields the result for the FLE, represented by ω∗n(η). By utilizing results (4.1)
and (4.4) and letting n→ ∞,

ω∗n(η)→ ωn(η). (4.12)

From result (4.5) and Eq (4.12), we obtain

lim
n→∞

ω∗n(η) = ω(η).

5. Numerical results and discussion

Using various initial estimations, we apply our proposed approach to the Lienard equation in this
section. The Lienard equation’s constants are selected for comparison, providing that exact solutions
are known for these particular constant values.

Case 1. With the following initial conditions, we generate the approximate result for the FLE given
by Eq (1.3) in this case [16, 17]:

z(0) = σ =

√
−2c

d
and z′(0) = δ = −

c
√
−c

d
√
−2c

d

. (5.1)

We take e = −3, d = 4 and c = −1. For Case 1, the exact solution for the classical Lienard equation
is

z(η) =

√
−2c(1 + tanh

√
−cη)

d
. (5.2)

Figure 1 illustrates the approximate solutions for different values of α specifically 1.8, 1.9 and 2.
The results clearly show a smooth transition from fractional to integer order. Furthermore, Table 1
provides a comparison between the exact solutions and the approximate solutions derived using our
proposed method.
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α=1.8

α=1.9

α=2

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

η

z(
η
)

Figure 1. Behavior of z(η) at various α for Case 1.

Table 1. Analysis of the obtained and exact solution for case 1 when α = 2 and n = 4.

η Exact solution Present method
0.00 0.7071067 0.7071067
0.01 0.7106334 0.7106081
0.02 0.7141419 0.7140406
0.03 0.7176318 0.7174032
0.04 0.7211028 0.7206950
0.05 0.7245544 0.7239150
0.06 0.7279862 0.7270623
0.07 0.7313979 0.7301360
0.08 0.7347890 0.7331350
0.09 0.7381591 0.7360586
0.1 0.7415079 0.7389057

Table 1 demonstrates that the solutions obtained using the suggested method are reliable for real
world implementations of the FLE.

Case 2. Here, we solved the FLE with the subsequent initial guess [16, 17]:

z(0) = σ =

√
φ

2 + ζ
and z′(0) = δ = 0, (5.3)

where

φ = 4

√
3c2(

3d2 − 16ce
) and ζ = −1 +

√
3d√(

3d2 − 16ce
) . (5.4)
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Here, we put c = −1, d = 4 and e = 3. The exact solution for the classical Lienard equation with
initial conditions in Eq (1.4), is

z(η) =

√
φ sech2 √

−cη

2 + ζ sech2 √
−cη

,

where φ and ζ are as given in Eq (5.4).
In Figure 2, we present the responses for various values of α = 1.8, 1.9 and 2, respectively. The

results clearly show a smooth transition from fractional to integer order. Table 2 presents both the exact
solutions and the approximate solutions obtained using our proposed method.

α=1.8

α=1.9

α=2

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

η

z(
η
)

Figure 2. Behavior of z(η) at various α for Case 2.

Table 2. Analysis of the obtained and exact solution for Case 2 when α = 2 and n = 4.

η Exact solution Present method
0.00 0.6435942 0.6435942
0.01 0.6435565 0.6435619
0.02 0.6434434 0.6434668
0.03 0.6432551 0.6433074
0.04 0.6429915 0.6430830
0.05 0.6426530 0.6427927
0.06 0.6422396 0.6424360
0.07 0.6417518 0.6420119
0.08 0.6411897 0.6415199
0.09 0.6405539 0.6409593
0.1 0.6398446 0.6403293
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6. Conclusions

In this paper, we proposed a computational method for the FLE involving the Liouville-Caputo
operator. This method stands out for its simplicity and user-friendliness, making it easier to
implement than other techniques. The ease primarily arises from the straightforward construction
of the operational matrix for the differential equation. We have developed the operational matrix for
Liouville-Caputo differentiation in connection with VLPs. We have observed that at α = 2, the solution
of fractional Lienard equation by applying suggested techniques is in great agreement with the exact
solution of the FLE. The results suggest that the proposed technique is highly suitable and accurate
for analyzing fractional-order models involving the Liouville-Caputo operator. The operational matrix
method for the FLE is pivotal in engineering and physics. It enables precise modeling of diverse
systems like electrical circuits and particle dynamics, aiding in control system design, vibration
analysis and understanding nonlinear phenomena in various fields.
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