In this paper, we study the following Kirchhoff type problems:
$ \left\{ \begin{array}{l} -(\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u^{3}+g(u, \lambda), \, \, \, \, \, \, \, \, \mathrm{in}\, \, \Omega,\\ u = 0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \mathrm{on}\, \, \partial\Omega, \end{array} \right. $
where $ \lambda $ is a parameter. Under some natural hypotheses on $ g $ and $ \Omega $, we establish a unilateral global bifurcation result from interval for the above problem. By applying the above result, under some suitable assumptions on nonlinearity, we shall investigate the existence of one-sign solutions for a class of Kirchhoff type problems.
Citation: Wenguo Shen. Unilateral global interval bifurcation and one-sign solutions for Kirchhoff type problems[J]. AIMS Mathematics, 2024, 9(7): 19546-19556. doi: 10.3934/math.2024953
In this paper, we study the following Kirchhoff type problems:
$ \left\{ \begin{array}{l} -(\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u^{3}+g(u, \lambda), \, \, \, \, \, \, \, \, \mathrm{in}\, \, \Omega,\\ u = 0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \mathrm{on}\, \, \partial\Omega, \end{array} \right. $
where $ \lambda $ is a parameter. Under some natural hypotheses on $ g $ and $ \Omega $, we establish a unilateral global bifurcation result from interval for the above problem. By applying the above result, under some suitable assumptions on nonlinearity, we shall investigate the existence of one-sign solutions for a class of Kirchhoff type problems.
[1] | G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883. |
[2] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North Holland Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3 |
[3] | C. Chen, Y. Kuo, T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876–1908. https://doi.org/10.1016/j.jde.2010.11.017 doi: 10.1016/j.jde.2010.11.017 |
[4] | S. Liang, S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbb{R}^{N}$, Nonlinear Anal., 81 (2013), 31–41. https://doi.org/10.1016/j.na.2012.12.003 doi: 10.1016/j.na.2012.12.003 |
[5] | G. Autuori, F. Colasuonno, P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math., 16 (2014), 1450002. https://doi.org/10.1142/S0219199714500023 doi: 10.1142/S0219199714500023 |
[6] | S. Gupta, G. Dwivedi, Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti-Rabinowitz condition, Rend. Circ. Mat. Palermo Ser. 2, 2023 (2023), 1–12. https://doi.org/10.1007/s12215-023-00902-7 doi: 10.1007/s12215-023-00902-7 |
[7] | P. H. Lv, G. G. Lin, X. J. Lv, The asymptotic behaviors of solutions for higher-order ($m_1, m_2$)-coupled Kirchhoff models with nonlinear strong damping, Demonstratio Math., 56 (2023), 20220197. https://doi.org/10.1515/dema-2022-0197 doi: 10.1515/dema-2022-0197 |
[8] | E. Toscano, C. Vetro, D. Wardowski, Systems of Kirchhoff type equations with gradient dependence in the reaction term via subsolution-supersolution method, Discrete Contin. Dyn. Syst. S, 16 (2023), 2213–2229. https://doi.org/10.3934/dcdss.2023070 doi: 10.3934/dcdss.2023070 |
[9] | F. Y. Li, J. P. Shi, Z. P. Liang, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155–167. https://doi.org/10.1016/j.anihpc.2013.01.006 doi: 10.1016/j.anihpc.2013.01.006 |
[10] | G. M. Figueiredo, C. Morales-Rodrigo, J. R. S. Júnior, A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material, J. Math. Anal. Appl., 416 (2014), 597–608. https://doi.org/10.1016/j.jmaa.2014.02.067 doi: 10.1016/j.jmaa.2014.02.067 |
[11] | G. W. Dai, H. Y. Wang, B. X. Yang, Global bifurcation and positive solution for a class of fully nonlinear problems, Comput. Math. Appl., 69 (2015), 771–776. https://doi.org/10.1016/j.camwa.2015.02.020 doi: 10.1016/j.camwa.2015.02.020 |
[12] | G. W. Dai, Eigenvalue, global bifurcation and positive solutions for a class of nonlocal elliptic equations, Topol. Methods Nonlinear Anal., 48 (2016), 213–233. https://doi.org/10.12775/TMNA.2016.043 doi: 10.12775/TMNA.2016.043 |
[13] | G. W. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math., 21 (2019), 1750093. https://doi.org/10.1142/S0219199717500936 doi: 10.1142/S0219199717500936 |
[14] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9 |
[15] | E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069–1076. https://doi.org/10.1512/iumj.1974.23.23087 doi: 10.1512/iumj.1974.23.23087 |
[16] | H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differ. Equ., 26 (1977), 375–390. https://doi.org/10.1016/0022-0396(77)90086-9 doi: 10.1016/0022-0396(77)90086-9 |
[17] | G. W. Dai, R. Y. Ma, Global bifurcation, Berestycki's conjecture and one-sign solutions for p-Laplacian, Nonlinear Anal., 91 (2013), 51–59. https://doi.org/10.1016/j.na.2013.06.003 doi: 10.1016/j.na.2013.06.003 |
[18] | W. G. Shen, Unilateral global interval bifurcation for Kirchhoff type problems and its applications, Commun. Pure Appl. Anal., 17 (2018), 21–37. https://doi.org/10.3934/cpaa.2018002 doi: 10.3934/cpaa.2018002 |
[19] | W. G. Shen, Global interval bifurcation and convex solutions for the Monge-Ampere equations, Electron. J. Differ. Equ., 2018 (2018), 1–15. |
[20] | G. W. Dai, Global structure of one-sign solutions for problem with mean curvature operator, Nonlinearity, 31 (2018), 5309. https://doi.org/10.1088/1361-6544/aadf43 doi: 10.1088/1361-6544/aadf43 |
[21] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[22] | P. H. Rabinowitz, On bifurcation from infinity, J. Differ. Equ., 14 (1973), 462–475. https://doi.org/10.1016/0022-0396(73)90061-2 doi: 10.1016/0022-0396(73)90061-2 |
[23] | W. Allegretto, Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., 32 (1998), 819–830. https://doi.org/10.1016/S0362-546X(97)00530-0 doi: 10.1016/S0362-546X(97)00530-0 |
[24] | A. Ambrosetti, R. M. Calahorrano, F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin., 31 (1990), 213–222. |
[25] | G. W. Dai, Two Whyburn type topological theorems and its applications to Monge-Ampere equations, Calc. Var. Partial Differ. Equ., 55 (2016), 1–28. https://doi.org/10.1007/s00526-016-1029-0 doi: 10.1007/s00526-016-1029-0 |
[26] | G. T. Whyburn, Topological analysis, Princeton: Princeton University Press, 1958. |