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Abstract: In this paper, we study the following Kirchhoff type problems:{
−(
∫
Ω
|∇u|2dx)∆u = λu3 + g(u, λ), in Ω,

u = 0, on ∂Ω,

where λ is a parameter. Under some natural hypotheses on g and Ω, we establish a unilateral global
bifurcation result from interval for the above problem. By applying the above result, under some
suitable assumptions on nonlinearity, we shall investigate the existence of one-sign solutions for a
class of Kirchhoff type problems.
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1. Introduction

Consider the following Kirchhoff type problem:{
−(
∫
Ω
|∇u|2dx)∆u = λu3 + g(u, λ), in Ω,

u = 0, on ∂Ω,
(1.1)

where λ is a parameter. The problem (1.1) is nonlocal as the appearance of the term
∫
Ω
|∇u|2dx which

implies that it is not a pointwise identity. This causes some mathematical difficulties which make
the study for the problem (1.1) particularly interesting. The main difficulties when dealing with this
problem lie in the presence of the nonlocal terms which arises in nonlinear vibrations and the analogous
to the stationary case of equations that arise in the study of string or membrane vibrations.
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The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff
in 1883 [1]. More precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u
∂t2 − (

ρ0

h
+

E
2L

∫ L

0
|
∂u
∂x
|2dx)

∂2u
∂x2 = f (x, u),

where ρ, ρ0, h, E and L are constants, f is the external force, by considering the effect of the changing
in the length of the string during the vibration. After the famous article by Lions [2], Eq (1.1) received
much attention, and some important and interesting results have been obtained, for example, see [3–5].
Recently, by using mountain pass theorem, and so on, the authors [6–8] have studied the existence of
weak solution, etc. for the Kirchhoff equations. Meanwhile, by applying the bifurcation techniques,
there are some papers to study Kirchhoff type problems, see for example [9–13].

Assume Ω and g ∈ C(R2,R) satisfy the following conditions:
(H0) Ω satisfy one of the following conditions:

(i) Ω is an open ball in RN for N = 1, 2, 3;
(ii) Ω ⊂ R2 is symmetric in x and y, and convex in the x and y directions or
(iii) Ω ⊂ R2 is convex.

(H1) There exist c > 0 and p ∈ (1, 2∗) such that |g(s, λ)| ≤ c(1 + |s|(p−1)), where

2∗ =
{ 2N

N−2 , N > 2,
+∞, N ≤ 2.

lim
s→0

g(s, λ))
s3 = 0 (1.2)

uniformly for λ ∈ R.
Let E := H1

0(Ω) with the norm ∥u∥ = (
∫
Ω
|∇u|2dx)1/2. Let Q+ = {u ∈ E|u > 0 in Ω} and set

Q− = −Q+ and Q = Q+ ∪ Q−. Let S ± denote the closure in R × Q± of the set of nontrivial solutions
of (1.1).

From [13], obviously, the problem (1.1) can be equivalently written as u = F(λu3 + H(λ, u))) :=
Gλ(u), where H(λ, ·) denotes the usual Nemytskii operator associated with g. From condition (H1) and
noting 4 < 2∗, we can see that Gλ : E → E is completely continuous and Gλ(0) = 0,∀λ ∈ R.

By Rabinowitz [14], Dai [13] obtained the following global bifurcation lemma.

Lemma 1.1. (See [13]) Let (H0), (H1) and (1.2) hold. Then (λ1, 0) is a bifurcation point of
problem (1.1) and the associated bifurcation continuum C in R×H1

0(Ω), whose closure contains (λ1, 0),
is either unbounded or contains a pair (µ, 0), where µ is another eigenvalue of problem (1.3), and λ1 is
the principal eigenvalue of the following problem:{

−(
∫
Ω
|∇u|2dx)∆u = λu3, in Ω,

u = 0, on ∂Ω.
(1.3)

By [12, Theorem 1.2], λ1 is simple, isolated and is the unique principal eigenvalue of the problem, and
φ1 is the principal eigenfunction corresponding to eigenvalue λ1.

By Dancer [15, Theorem 2.1], there are two continua C + and C − consisting of the bifurcation
branch C emanating from (λ1, 0), which satisfy:
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Lemma 1.2. Both C + and C − are unbounded and

C ν ⊂ (R × Pν ∪ {(λ1, 0)}),

where ν ∈ {+,−}.
However, among the above papers, the nonlinearities are differentiable at the origin. In [16],

Berestycki established an important global bifurcation theorem from intervals for a class of second-
order problems involving non-differentiable nonlinearity. Recently, Dai and Ma [17] also considered
a class of high-dimensional p-Laplacian problems involving non-differentiable nonlinearity, and the
author [18,19] studied interval bifurcation for the Monge-Ampere equations and Kirchhoff type
problems involving non-differentiable nonlinearity, respectively. In 2018, Dai [20] established interval
bifurcation theorem from the trivial solutions axis by a new method.

Motivated by above papers, we shall consider the Kirchhoff type problem (1.1). We assume that
g ∈ C(R2,R) satisfies the following conditions:

(H2) g(s, µ)s > 0 for any s , 0 and µ ∈ R.
(H3) There exist g

0
, g0 ∈ R and g

0
, g0 such that

g
0
= lim inf

|s|→0

g(s, µ)
s3 , g0 = lim sup

|s|→0

g(s, µ)
s3

uniformly for µ ∈ R.
(H4) There exist g

∞
, g∞ ∈ R and g

∞
, g∞such that

g
∞
= lim inf
|s|→+∞

g(s, µ)
s3 , g∞ = lim sup

|s|→+∞

g(s, µ)
s3

uniformly for µ ∈ R.
Under (H0)–(H4), we shall establish the Theorems 2.1 and 2.2 for the problem (1.1), which

bifurcates from the trivial solutions axis or from infinity, respectively.
Furthermore, by applying the above results (Theorems 2.1 and 2.2), we shall investigate the

existence of one-sign solutions for the following Kirchhoff type problems:{
−(
∫
Ω
|∇u|2dx)∆u = r f (u), in Ω,

u = 0, on ∂Ω,
(1.4)

where r is a parameter. Let f satisfies:
(H5) f ∈ C(R,R) such that f (s)s > 0 for any s , 0;
(H6) There exist f

0
, f 0, f

∞
, f∞ ∈ (0,+∞) with f∞ < f

0
or f 0 < f

∞
such that

f
0
= lim inf

|s|→0

f (s)
s3 , f 0 = lim sup

|s|→0

f (s)
s3 ,

f
∞
= lim inf
|s|→+∞

f (s)
s3 , f∞ = lim sup

|s|→+∞

f (s)
s3 .

The rest of this paper is arranged as follows. In Section 2, we establish the unilateral global
bifurcation results for the problem (1.1) from the trivial solutions axis or from infinity, respectively.
In Section 3, on the basis of the unilateral global interval bifurcation results, we shall investigate the
existence of one-sign solutions for the Kirchhoff type problems (1.4).
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2. Unilateral global bifurcation from an interval at 0 and∞

We have our first result on (1.1):
Theorem 2.1. Assume that (H0)–(H3) hold. Let I0 = [λ1 − g0, λ1 − g

0
]. The component C ν of

S ν ∪ (I0 × {0}), containing I0 × {0} is unbounded and lies in (R × Pν) ∪ (I0 × {0}).
To prove Theorem 2.1, we introduce the following auxiliary approximate problem:{

−(
∫
Ω
|∇u|2dx)∆u = λu3 + g(u|u|ϵ , λ), in Ω,

u = 0, on ∂Ω.
(2.1)

The next lemma provides the a priori bounds for the solutions of problem (2.1) near the trivial solution.
Lemma 2.1. Let ϵn, 0 < ϵn < 1, be a sequence converging to 0. If there exists a sequence (λn, un) ∈
R × Pν such that (λn, un) is a nontrivial solution of problem (2.1) corresponding to ϵ = ϵn, and (λn, un)
converges to (λ, 0) in R × X, then λ ∈ I0.
Proof. Let vn = un/∥un∥, then vn is a solution of the following problem:{

−(
∫
Ω
|∇vn|

2dx)∆vn = λnv3
n +

g(un |un |
ϵn ,λn)

∥un∥3
, in Ω,

vn = 0, on ∂Ω.

It is not difficult to see that
g

0
≤

g(un|un|
ϵn , λn)

∥un∥
3 ≤ g0. (2.2)

So, up to a subsequence, there exists α ∈ [g
0
, g0] such that

lim
n→∞

g(un|un|
ϵ , λn)

u3
n

= α

uniformly for n large enough.
Using this fact with (2.2), we have that λnv3

n +
g(un |un |

ϵn ,λn)
∥un∥3

is bounded for n large enough. By the

completely continuous of Gλ implies that vn is strong convergence in C1(Ω). Without loss of generality,
we may assume that vn → v with ∥v∥ = 1. Clearly, we have v ∈ P.

So, up to a subsequence, we obtain that

v = λv3 + αv3.

It follows that λ + α = λ1, which implies λ ∈ I0.
Therefore, we have that λ ∈ I0.

Proof of Theorem 2.1. We only prove the case of C + since the case of C − is similar.
We divide the rest of proofs into two steps.
Step 1. We show that C + ⊂ R × P+ ∪ (I0 × {0}).
For any (λ, u) ∈ C +, there are two possibilities: (i) u ≥ 0 but u . 0, or (ii) u ≡ 0. If the case (ii)

occurs, there exists a sequence (λn, un) ∈ R × P+ such that (λn, un) is a solution of problem (1.1), and
(λn, un) converges to (λ, 0) in R × X. By Lemma 2.1, we have that λ ∈ I0, i.e., (λ, u) ∈ I0 × {0}. Hence,
C + ⊂ R×P+∪ (I0 × {0}) in the case of (ii). If the case (i) occurs, by the strong maximum principle [21,
Theorem 8.19], we know that u > 0 in Ω. Hence, C + ⊂ R × P+ ∪ (I0 × {0}).
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Step 2. Similar to the argument of Theorem 3.1 in [18], we prove that C + is unbounded.
We add the points {(λ,∞)|λ ∈ R} to space R × E. Let S N denote the spectral set of problem (1.3).

Let I∞ = [λ − g∞, λ − g
∞

], where λ ∈ S N \ {λ1}. By Rabinowitz [22], our second main result for (1.1)
is the following theorem.
Theorem 2.2. Let (H0), (H1), (H2) and (H4) hold. Let I∞ = [λ1−g∞, λ1−g

∞
]. There exists a connected

component D ν of S ν ∪ (I∞ × {∞}), containing I∞ × {∞}. Moreover, if Λ ⊂ R is an interval such that
Λ ∩ (∪λ∈S N\{λ1}

(I∞ ∪ I∞)) = I∞ and M is a neighborhood of I∞ × {∞} whose projection on R lies in Λ
and whose projection on E is bounded away from 0, then either

(1) D ν −M is bounded in R × E in which case D ν −M meets R = {(λ, 0)|λ ∈ R} or
(2) D ν −M is unbounded.
If (2) occurs and D ν −M has a bounded projection on R, then D ν −M meets I∞.

Proof. The idea is similar to the proof of Theorem 1.6 of [22], but we give a rough sketch of the proof
for readers convenience. If (λ, u) ∈ S ν with ∥u∥ , 0, dividing (2.1) by ∥u∥6 and setting v = u/∥u∥2

yield {
−(
∫
Ω
|∇v|2dx)∆v = λv3 +

g(u|u|ϵ ,λ)
∥u∥6 , in Ω,

v = 0, on ∂Ω.
(2.3)

Define

g̃(v, λ) =
{
∥v∥6g( v

∥v∥2 , λ), if v , 0,
0, if v = 0.

Clearly, (2.3) is equivalent to{
−∆v = λv3 + g̃(v|v|ϵ , λ) Ω,
v = 0, on ∂Ω.

(2.4)

It is obvious that (λ, 0) is always the solution of (2.4). Now, applying Theorem 2.1 to the
problem (2.4), we have a connected component C ν of S ν∪(I0×{0}). Under the inversion v→ v

∥v∥2 = u,
C ν → D ν satisfying the problem (1.1). Clearly, D ν satisfy the conclusions of this theorem.

3. One-sign solutions for Kirchhoff type problems

Let Σ± denote the closure in K± of the set of nontrivial solutions of (1.4).
In order to prove Theorem 3.1, we need the following Sturm-type comparison result.

Lemma 3.1. Let (H0) hold. Assume that bi(x) are two weight functions such that bi(x) ∈ C(Ω), i = 1, 2.
Also let ui(i = 1, 2) be weak solution of the following differential equations:{

−∥u∥2∆u = bi(x)u3, in Ω,
u = 0, on ∂Ω,

respectively, u1 , 0 for almost every x ∈ Ω. If b1(x)u2
1 ≤ b2(x)u2

2 for x ∈ Ω, then u2 must change sign.
Proof. Without loss of generality, we may assume that ∥u∥ = 1 and u1 > 0, u2 > 0. Then, by [23, (1.1)]
the following Picones identity:

0 ≤ |∇u1|
2 + |

u1

u2
∇u2|

2 − 2∇u1(
u1

u2
∇u2) = |∇u1|

2 − ∇(
u2

1

u2
)∇u2.
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Furthermore, we have∫
Ω

[
|∇u1|

2 − ∇(
u2

1

u2
)∇u2

]
dx =

∫
Ω

[
u1

u2
(u2L[u1] − u1L[u2]

]
=

∫
Ω

[
b1(x)u2

1 − b2(x)u2
2]u2

1

]
≤ 0,

where L[u] = −∆u.
Moreover, we have

|∇u2|
2 + |

u2

u1
∇u1|

2 − 2∇u2(
u2

u1
∇u1) ≡ 0,

so ∇(u2
u1

) = 0, a.e. Ω, i.e., u1 = ku2 for some constant k in each component of Ω. But this is impossible
since b2(x) . b1(x) almost everywhere in Ω. This accomplishes the proof.

The main results of this section are the following theorems.
Theorem 3.1. Let (H0), (H5) and (H6) hold. For all

r ∈ (
λ1

f
0

,
λ1

f∞
) ∪ (

λ1

r f
∞

,
λ1

r f 0

), (3.1)

problem (1.4) possesses at least two one-sign solutions u+ and u− such that νuν is positive for ν = +,−.
Theorem 3.2. Let (H0) and (H5) hold. Suppose that f

0
= +∞, f

∞
, f∞ ∈ (0,+∞). For all

r ∈ (0,
λ1

f∞
),

problem (1.4) possesses at least two one-sign solutions u+ and u− such that νuν is positive for ν = +,−.
Theorem 3.3. Let (H0) and (H5) hold. Suppose that f

∞
= +∞, f

0
, f 0 ∈ (0,+∞). For all

r ∈ (0,
λ1

f 0

),

problem (1.4) possesses at least two one-sign solutions u+ and u− such that νuν is positive for ν = +,−.
Theorem 3.4. Let (H0) and (H5) hold. Suppose that f 0 = 0, f

∞
, f∞ ∈ (0,+∞). For all

r ∈ (
λ1

f
∞

,+∞),

problem (1.4) possesses at least two one-sign solutions u+ and u− such that νuν is positive for ν = +,−.
Theorem 3.5. Let (H0) and (H5) hold. Suppose that f∞ = 0, f

0
, f 0 ∈ (0,+∞). For all

r ∈ (
λ1

f
0

,+∞),

problem (1.4) possesses at least two one-sign solutions u+ and u− such that νuν is positive for ν = +,−.
We construct the following problem:{

−(
∫
Ω
|∇u|2dx)∆u = r(u3 + g(u)), in Ω,

u = 0, on ∂Ω,
(3.2)
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where g = f − u3. Clearly, problem (3.2) is equivalent to problem (1.4). Furthermore, we have that
g

0
= f

0
− 1, g0 = f 0 − 1, g

∞
= f

∞
− 1, g∞ = f∞ − 1.

Proof of Theorem 3.1. We consider the following problem:{
−(
∫
Ω
|∇u|2dx)∆u = µru3 + rg(u), in Ω,

u = 0, on ∂Ω.
(3.3)

Let I0 = [λ1
r − f 0 + 1, λ1

r − f
0
+ 1]. By Theorem 2.1, There is a distinct unbounded component C ν

of S ν ∪ (I0 × {0}), containing I0 × {0} and lying in (Kν ∪ (I0 × {0})).
Set I∞ = [λ1

r − f∞ + 1, λ1
r − f

∞
+ 1]. By Theorem 2.2, There is a distinct unbounded component D ν

of S ν ∪ (I∞ × {∞}), which satisfy the alternates of Theorem 2.2.
We claim that C ν = D ν.
Firstly, we shall show that 2o of Theorem 2.2 does not occur.
On the contrary, we suppose that (µn, vn) ∈ D ν −M such that

lim
n→∞
µn = ±∞.

It follows that limn→∞ r(µn +
g(u)
u3 )) = ±∞.

If limn→∞ r(µn +
g(u)
u3 )) = −∞, applying Lemma 3.1 to vn and φ1, we can get that φ1 must change

its sign for n large enough. While, this is impossible. So we have that limn→∞ r(µn +
g(u)
u3 )) = +∞.

Applying Lemma 3.1 to φ1 and vn, we get that vn must change its sign for n large enough, and this
contradicts the fact that vn ∈ Pν.

So case (1) of Theorem 2.2 must happen, i.e., there exist some point (µ∗, 0) ∈ D ν. By Lemma 2.1,
one obtain that µ∗ ∈ I0, and it follows that C ν = D ν.

Obviously, for any solution (1, v) of (3.3), it yields a solution v of (3.2). By (H6) and (3.1), we have
that I0 ∩ I∞ = ∅ and λ1

r − f
0
+ 1 < 1 < λ1

r − f∞ + 1 or λ1
r − f

∞
+ 1 < 1 < λ1

r − f 0 + 1. It follows that
the subsets I0 × E and I∞ × E of R × E can be separated by the hyperplane {1} × E. Furthermore, we
have C ν cross the hyperplane {1} × E in R × E.
Proof of Theorem 3.2. By [24], define f as the following:

f [n](s) :=


ns, s ∈ [−1

n ,
1
n ],[

f ( 2
n ) − 1

]
(ns − 2) + f ( 2

n ), s ∈ (1
n ,

2
n ),

−
[
f (−2

n ) + 1
]

(ns + 2) + f (−2
n ), s ∈ (−2

n ,−
1
n ),

f (s), s ∈ (−∞,−2
n ] ∪ [ 2

n ,+∞).

We consider the following problem:{
−(
∫
Ω
|∇u|2dx)∆u = µr f [n](u), in Ω,

u = 0, on ∂Ω.
(3.4)

Clearly, we can see that limn→+∞ f [n](s) = f (s), ( f [n])0 = n, f [n]
∞
= f

∞
, f

[n]
∞ = f∞.

By Theorem 2.1, there exists an unbounded continuum D ν[n] of solutions of the problem (3.4)
emanating from (λ1

rn , 0) such that D ν[n] ⊂ ((R ×S ν) ∪ {(λ1
rn , 0)}).
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19553

Taking z∗ = (0, 0), we easily obtain that z∗ ∈ lim infn→+∞D ν[n].We obtain that
(
∪∞n=1D

ν[n]
)
∩ BR is s

pre-compact.
Therefore, by [25, Lemma 2.1], D ν = lim supn→∞D ν[n] is unbounded closed connected such that

z∗ ∈ D ν.
For any (µ, u) ∈ D ν, by [26, P. 7], it follows that D ν ⊆ ∪∞n=1D

ν[n]. So we have that D ν ⊂ ((R×S ν)∪
{(0, 0)}).

For any sequence (µn, un) ∈ D ν with limn→+∞ ∥un∥ = +∞. By f∞, f
∞
∈ (0,+∞), for n large enough,

one can obtain that f (un)
u3

n
is bounded. In the following, we have α ∈ [ f∞, f

∞
] such that

f (un)
u3

n
= α

for n large enough. Similar the proof of Theorem 3.1, Lemma 3.1 implies that µn is bounded. So, up
to a sequence, we have that µn → µ ∈ R. Then reasoning as that of Lemma 2.1, we obtain that

µ ∈ [
µ1

r f∞
,
µ1

r f
∞

].

So, D ν joins (0, 0) to [ µ1

r f∞
, µ1

r f
∞

] × {∞}. By the structure of D ν, there exist two one-sign solutions u+

and u−.

Proof of Theorem 3.3. We define the cut-off function of f as the following:

f [n](s) :=


ns, s ∈ (−∞,−2n] ∪ [2n,+∞),
2n2+ f (−n)

n (s + n) + f (−n), s ∈ (−2n,−n),
2n2− f (n)

n (s − n) + f (n), s ∈ (n, 2n),
f (s), s ∈ [−n, n].

We consider the following problem:{
−(
∫
Ω
|∇u|2dx)∆u = µr f [n](u), in Ω,

u = 0, on ∂Ω.
(3.5)

Clearly, we can see that limn→+∞ f [n](s) = f (s), ( f [n])∞ = n, f [n]
0
= f

0
, f

[n]
0 = f 0.

By Theorem 2.2, there exists an unbounded continuum D ν[n] of solutions of the problem (3.5)
emanating from (λ1

rn ,∞), such that D ν[n] ⊂ ((R × Pν) ∪ {(λ1
rn ,∞)}), ν ∈ {+,−}.

Taking zn = (λ1
rn ,∞) and zn → z∗ = (0,∞), we easily obtain that z∗ ∈ lim infn→+∞D ν[n] with

∥z∗∥ = +∞.
Therefore, by [25, Theorem 2.2], there exists an unbounded component D ν in E := lim infn→∞D ν[n]

and z∗ ∈ D ν, ν ∈ {+,−}.
From limn→+∞ f [n](s) = f (s), (3.5) can be converted to the equivalent equation (1.4). Since D ν[n] ⊂

(R × Pν), we conclude D ν ⊂ (R × Pν). Moreover, D ν ⊂
∑ν by (1.4).

For any sequence (µn, un) ∈ D ν with limn→+∞ ∥un∥ = 0. In view of f 0, f
0
∈ (0,+∞), we can see that

f (un)
u3

n
is bounded for n large enough.
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For n large enough, one can obtain that f (un)
u3

n
is bounded. In the following, we have α ∈ [ f 0, f

0
]

such that
f (un)
u3

n
= α

for n large enough. If µn → µ ∈ R as n→ +∞, by Lemma 2.1, it follows that

µ ∈ [
µ1

r f 0

,
µ1

r f
0

].

So, D ν joins [ µ1

r f 0
, µ1

r f
0
] × {0} to (0,∞).

By the structure of D ν, there exist two one-sign solutions u+ and u−.
Proof of Theorems 3.4 and 3.5. Similar the proof of Theorems 3.2 and 3.3, we can obtain Theorems 3.4
and 3.5.

4. Conclusions

In this study, I establish a unilateral global bifurcation result for the Kirchhoff type problem (1.1)
from an interval lying on trivial solution axis or an interval at infinity,respectively. By applying the
above results, under some suitable assumptions on nonlinearity, I shall investigate the existence of
one-sign solutions for a class of Kirchhoff type problem (1.4).
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