Loading [MathJax]/jax/output/SVG/jax.js
Research article

Application of fixed point theory to synaptic delay differential equations in neural networks

  • Received: 16 September 2024 Revised: 17 October 2024 Accepted: 18 October 2024 Published: 31 October 2024
  • MSC : 46S40, 47H10, 54H25

  • The objective of this research is to propose a new concept known as rational (αη-ψ)-contractions in the framework of F-metric spaces and to establish several fixed point theorems. These theorems help to generalize and unify various established fixed point results from the existing literature. To demonstrate the practical effectiveness of our approach, we provide a significant example that confirms our findings. In addition, we introduce a generalized multivalued (α-ψ)-contraction concept in F-metric spaces and use it to prove fixed point theorems specifically designed for multivalued mappings. To demonstrate the practical utility of our findings, we apply our main results to the solution of synaptic delay differential equations in neural networks.

    Citation: Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad. Application of fixed point theory to synaptic delay differential equations in neural networks[J]. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495

    Related Papers:

    [1] Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214
    [2] Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277
    [3] Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101
    [4] Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719
    [5] Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464
    [6] Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279
    [7] Shuang Li, Xiao-mei Wang, Hong-ying Qin, Shou-ming Zhong . Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays. AIMS Mathematics, 2021, 6(8): 8044-8063. doi: 10.3934/math.2021467
    [8] Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262
    [9] Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666
    [10] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172
  • The objective of this research is to propose a new concept known as rational (αη-ψ)-contractions in the framework of F-metric spaces and to establish several fixed point theorems. These theorems help to generalize and unify various established fixed point results from the existing literature. To demonstrate the practical effectiveness of our approach, we provide a significant example that confirms our findings. In addition, we introduce a generalized multivalued (α-ψ)-contraction concept in F-metric spaces and use it to prove fixed point theorems specifically designed for multivalued mappings. To demonstrate the practical utility of our findings, we apply our main results to the solution of synaptic delay differential equations in neural networks.



    Let q3 be an integer, and χ be a Dirichlet character modulo q. The characters of the rational polynomial are defined as follows:

    N+Mx=N+1χ(f(x)),

    where M and N are any given positive integers, and f(x) is a rational polynomial. For example, when f(x)=x, for any non-principal Dirichlet character χ mod q, Pólya [1] and Vinogradov [2] independently proved that

    |N+Mx=N+1χ(x)|<qlnq,

    and we call it Pólya-Vinogradov inequality.

    When q=p is an odd prime, χ is a p-th order character modulo p, Weil [3] proved

    N+Mx=N+1χ(f(x))p12lnp,

    where f(x) is not a perfect p-th power modulo p, AB denotes |A|<kB for some constant k, which in this case depends on the degree of f.

    Many authors have obtained numerous results for various forms of f(x). For example, W. P. Zhang and Y. Yi [4] constructed a special polynomial as f(x)=(xr)m(xs)n and deduced

    |qa=1χ((ar)m(as)n)|=q,

    where (rs,q)=1, and χ is a primitive character modulo q. This shows the power of q in Weil's result is the best possible!

    Also, when χ is a primitive character mod q, W. P. Zhang and W. L. Yao [5] obtained

    qa=1χ(am(1a)m)=q¯χ(4m),

    where q is an odd perfect square and m is any positive integer with (m,q)=1.

    When q=pα11pα22pαss is a square full number with pi3mod4, χ=χ1χ2χs with χi being any primitive even character mod pαii(i=1,2,,s), W. P. Zhang and T. T. Wang [6] obtained the identity

    |qa=1χ(ma2k1+n¯a)|=qp|q(1+(mn(2k1)p)), (1.1)

    where a¯a1modq, and (p) denotes the Legendre symbol. Besides, k, m and n also satisfying some special conditions. Other related work about Dirichlet characters of the rational polynomials can be found in references [7,8,9,10,11,12,13,14]. Inspired by these, we will study the sum

    qa=1χ(ma+¯a).

    Following the way in [6], we obtain W. P. Zhang and T. T. Wang's identity (1.1) under a more relaxed situation. Then by adding some new ingredients, we derive some new identities for the fourth power mean of it.

    Noting that if χ is an odd character modulo q, m is a positive integer with (m,q)=1, we can get

    qa=1χ(ma+¯a)=qa=1χ(ma+¯(a))=qa=1χ(ma+¯a).

    That is to say, under this condition,

    qa=1χ(ma+¯a)=0.

    So, we will only discuss the case of χ an even character. To the best of our knowledge, the following identities dealing with arbitrary odd square-full number cases are new and have not appeared before.

    Theorem 1.1. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    |qa=1χ(ma+¯a)|=qpq(1+(mp)),

    where pq denotes the product over all distinct prime divisors p of q.

    Remark 1.1. It is obvious that Theorem 1.1 is W. P. Zhang and T. T. Wang's identity (1.1) with k=n=1 by removing the condition pi3mod4 (i=1,2,,s). Besides, using our results, we can directly obtain the absolute values of the sums of Dirichlet characters satisfying some conditions, which avoids complex calculations. What's more, the result of Theorem 1.1 also shows that the order of q in Weil's result can not be improved.

    To understand the result better, we give the following examples:

    Example 1.1. Let q=32, χ be a Dirichlet character modulo 9 defined as follows:

    χ(n)={e2πiind2n3,if (n,9)=1;0,if (n,9)>1.

    Obviously, χ is a primitive even character modulo 9. Taking m=1,2, then we have

    |9a=1χ(ma+¯a)|=|9a=1χ(a+¯a)|=|3χ(2)+3χ(7)|=|3e2πi3+3e2πi43|=6,|9a=1χ(ma+¯a)|=|9a=1χ(2a+¯a)|=|2χ(3)+2χ(6)+2χ(9)|=0.

    Example 1.2. Let q=52, χ be a primitive even character modulo 25 defined as follows:

    χ(n)={e2πiind2n5,if (n,25)=1;0,if (n,25)>1.

    Taking m=1,2, then we have

    |25a=1χ(ma+¯a)|=|25a=1χ(a+¯a)|=|5χ(2)+5χ(23)|=|5e2πi5+5e2πi115|=10,|25a=1χ(ma+¯a)|=|25a=1χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(7)+4χ(8)+4χ(12)|=|4e2πi5+4e2πi75+4e2πi55+4e2πi35+4e2πi95|=0.

    Example 1.3. Let q=132, χ be a primitive even character modulo 169 defined as follows:

    χ(n)={e2πiind2n13,if (n,169)=1;0,if (n,169)>1.

    Taking m=1,2, then we have

    |169a=1χ(ma+¯a)|=|169a=1χ(a+¯a)|=|4χ(1)+26χ(2)+4χ(4)+4χ(9)+4χ(12)+4χ(14)+4χ(17)+4χ(22)+4χ(25)+4χ(27)+4χ(30)+4χ(35)+4χ(38)+4χ(40)+4χ(43)+4χ(48)+4χ(51)+4χ(53)+4χ(56)+4χ(61)+4χ(64)+4χ(66)+4χ(69)+4χ(74)+4χ(77)+4χ(79)+4χ(82)|=|8+8eπi13+34e2πi13+8e3πi13+8e4πi13+8e5πi13+8e6πi13+8e7πi13+8e8πi13+8e9πi13+8e10πi13+8e11πi13+8e12πi13|=26,
    |169a=1χ(ma+¯a)|=|169a=1χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(5)+4χ(8)+4χ(10)+4χ(11)+4χ(15)+4χ(16)+4χ(18)+4χ(21)+4χ(23)+4χ(24)+4χ(28)+4χ(29)+4χ(31)+4χ(34)+4χ(36)+4χ(37)+4χ(41)+4χ(42)+4χ(44)+4χ(47)+4χ(49)+4χ(50)+4χ(54)+4χ(55)+4χ(57)+4χ(60)+4χ(62)+4χ(63)+4χ(67)+4χ(68)+4χ(70)+4χ(73)+4χ(75)+4χ(76)+4χ(80)+4χ(81)+4χ(83)|=|12+12eπi13+12e2πi13+12e3πi13+12e4πi13+12e5πi13+12e6πi13+12e7πi13+12e8πi13+12e9πi13+12e10πi13+12e11πi13+12e12πi13|=0.

    The above examples can be easily achieved by our Theorem 1.1. From Theorem 1.1, we may immediately obtain the following two corollaries:

    Corollary 1.1. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαi (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    |qa=1χ(ma+¯a)|={2ω(q)q, if m is a quadratic residue modulo q;0, otherwise,

    where ω(q) denotes the number of all distinct prime divisors of q.

    Corollary 1.2. Let q=pα11pα22pαss be an odd number with αi1 (i=1,2,,s), χi be any primitive even character mod pαii and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the inequality

    |qa=1χ(ma+¯a)|2ω(q)q.

    Theorem 1.2. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integers k and m with k1 and (m,q)=1, we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|2k=qk2ω(q)J(q)pq(1+(mp))2k,

    where J(q) denotes the number of primitive characters modulo q, and χmodq denotes the summation over all primitive characters modulo q.

    Example 1.4. Taking q=52, m=1,2, then we have

    χmod25χ(1)=1|25a=1χ(ma+¯a)|2k=χmod25χ(1)=1|25a=1χ(a+¯a)|2k=8102k,χmod25χ(1)=1|25a=1χ(ma+¯a)|2k=χmod25χ(1)=1|25a=1χ(2a+¯a)|2k=0,

    which can be easily achieved by our Theorem 1.2.

    Taking k=2 in Theorem 1.2, we may immediately obtain the followings:

    Corollary 1.3. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|4=q22ω(q)J(q)pq(1+(mp))4.

    Corollary 1.4. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|4={8ω(q)q2J(q), if m is a quadratic residue modulo q;0, otherwise.

    Theorem 1.3. Let p be an odd prime, χ be any non-principal character mod p. Then for any integer m with (m,p)=1, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p36p2+44(p23p+2)(mp)+(p1)E,if p3mod4;2p36p2+44(p2+p2)(mp)+(p1)E,if p1mod4,

    where

    E=p1a=1p1b=1((a2b1)(b1)bp)p1d=1((¯a2d1)(d1)dp).

    Remark 1.2. From [8], we know that when f(x) is a polynomial of odd degree n3, Weil's estimate ([15,16])

    |p1x=0(f(x)p)|(n1)p,

    implies that E<4p28p. Noting that qa=1χ(ma+¯a) can be regarded as a dual form of Kloosterman sums, which defined as qa=1e2πima+ˉaq, we can obtain some distributive properties of qa=1χ(ma+¯a) from Theorem 1.2 and 1.3.

    From Theorem 1.3, we also have the following corollaries:

    Corollary 1.5. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic residue m mod p, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p310p2+12p4+(p1)E,if p3mod4;2p310p24p+12+(p1)E,if p1mod4.

    Corollary 1.6. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic non-residue m mod p, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p32p212p+4+(p1)E,if p3mod4;2p32p2+4p4+(p1)E,if p1mod4.

    To prove our Theorems, we need some Lemmas as the following:

    Lemma 2.1. Let q, q1, q2 be integers with q=q1q2 and (q1,q2)=1, χi be any non-principal character mod qi (i=1,2). Then for any integer m with (m,q)=1 and χ=χ1χ2, we have the identity

    qa=1χ(ma+¯a)=q1b=1χ1(mb+¯b)q2c=1χ2(mc+¯c).

    Proof. From the properties of Dirichlet characters, we have

    qa=1χ(ma+¯a)=q1q2a=1χ1χ2(ma+¯a)=q1b=1q2c=1χ1χ2(m(bq2+cq1)+¯bq2+cq1)=q1b=1q2c=1χ1(m(bq2+cq1)+¯bq2+cq1)χ2(m(bq2+cq1)+¯bq2+cq1)=q1b=1χ1(mbq2+¯bq2)q2c=1χ2(mcq1+¯cq1)=q1b=1χ1(mb+¯b)q2c=1χ2(mc+¯c).

    This completes the proof of Lemma 2.1.

    Lemma 2.2. Let p be an odd prime, α and m be integers with α1 and (m,p)=1. Then for any primitive even character χ mod pα, we have the identity

    pαa=1χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)),

    where χ02=(p), τ(χ)=pαa=1χ(a)e(apα), χ1 is a primitive character mod pα and χ=χ21.

    Proof. For any primitive even character χ mod pα, there exists one primitive character χ1 mod pα such that χ=χ21. From the properties of Gauss sum, we can obtain

    pαa=1χ(ma+¯a)=1τ(¯χ)pαa=1pαb=1¯χ(b)e(b(ma+¯a)pα)=1τ(¯χ)pαa=1¯χ(a)pαb=1¯χ(b)e(b(ma2+1)pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ(a)e(bma2pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a2)e(bma2pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1(1+χ02(a))¯χ1(a)e(bmapα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a)e(bmapα)+1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1χ02(a)¯χ1(a)e(bmapα):=B1+B2.

    Now we compute B1 and B2 respectively.

    B1=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a)e(bmapα)=1τ(¯χ)pαb=1¯χ(b)χ1(bm)e(bpα)pαa=1¯χ1(bma)e(bmapα)=χ1(m)τ(¯χ1)τ(¯χ)pαb=1¯χ(b)χ1(b)e(bpα)=χ1(m)τ(¯χ1)τ(¯χ)pαb=1¯χ1(b)e(bpα)=χ1(m)τ2(¯χ1)τ(¯χ).

    Similarly, we have

    B2=χ1(m)χ02(m)τ2(χ02¯χ1)τ(¯χ).

    Therefore, we can obtain

    pαa=1χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)).

    Lemma 2.3. Let p be an odd prime. Then for any integer n, we have the identity

    pa=1(a2+np)={1,if (n,p)=1;p1,if (n,p)=p.

    Proof. See Theorem 8.2 of [17].

    Lemma 2.4. Let p be an odd prime. Then we have the identity

    p2a=2p1b=1((a2b1)(b1)bp)=2×(1)p12+2.

    Proof. From the properties of character sum, we have

    p2a=2p1b=1((a2b1)(b1)bp)=p1b=1(b1p)p2a=2((a2b1)bp)=p1b=1(b1p)p2a=2(b2(a2¯b)p)=p1b=1(b1p)p2a=2(a2¯bp)=p1b=1(b1p)(pa=1(a2¯bp)(1¯bp)((p1)2¯bp)(p2¯bp))=p1b=1(b1p)(12(1¯bp)(¯bp))=p1b=1(b1p)2p1b=1(b1p)(1¯bp)p1b=1(b1p)(¯bp)=p2b=0(bp)2p1b=1(b1p)((1¯b)b2p)p1b=1(¯b1p)=2p2b=0(bp)2p1b=1((b1)2bp)=2(p1b=0(bp)(p1p))2×(1)=2×(1)p12+2.

    This completes the proof of Lemma 2.4.

    Now we come to prove our Theorems.

    Firstly, we prove Theorem 1.1. With the help of Lemma 2 in [6], when α2, we have

    τ2(χ02¯χ1)τ2(¯χ1)=(1p)2=1,

    which implies from Lemma 2.2, we can obtain

    |pαa=1χ(ma+¯a)|=|χ1(m)τ2(¯χ1)τ(¯χ)(1+(mp))|=pα(1+(mp)).

    Then, applying Lemma 2.1, we can obtain

    |qa=1χ(ma+¯a)|=|pα11a1=1χ1(ma1+¯a1)||pαssas=1χs(mas+¯as)|=qpq(1+(mp)).

    This completes the proof of Theorem 1.1.

    Then, from Lemma 2.1 and Lemma 2.2, we can prove Theorem 1.2 as following:

    χmodqχ(1)=1|qa=1χ(ma+¯a)|2k=χ1modpα11χ1(1)=1|pα11a1=1χ1(ma1+¯a1)|2kχsmodpαssχs(1)=1|pαssas=1χs(mas+¯as)|2k=si=1[12J(pαii)pkαii|1+(mpi)|2k]=qk2ω(q)J(q)pq(1+(mp))2k.

    Finally, we prove Theorem 1.3. For any integer m with (m,p)=1, we have

    p1a=1χ(ma+¯a)=p1u=1χ(u)p1a=1am+¯aumodp1=p1u=1χ(u)p1a=1a2m2amu+m0modp1=p1u=1χ(u)p1a=0(2amu)2u24mmodp1=p1u=1χ(u)p1a=0a2u24mmodp1=p1u=1χ(u)(1+(u24mp))=p1u=1χ(u)(u24mp)=χ(2)p1u=1χ(u)(u2mp).

    So from the orthogonality of Dirichlet characters and the properties of reduced residue system modulo p, we have

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4=χmodpχ(1)=1|χ(2)p1u=1χ(u)(u2mp)|2|χ(2)p1u=1χ(u)(u2mp)|2=χmodpχ(1)=1p1a=1p1b=1p1c=1p1d=1χ(ac¯bd)(a2mp)(b2mp)(c2mp)(d2mp)=χmodpχ(1)=1p1a=1p1b=1p1c=1p1d=1χ(ac)(a2b2mp)(b2mp)(c2d2mp)(d2mp)=p1a=1p1b=1p1c=1p1d=1(a2b2mp)(b2mp)(c2d2mp)(d2mp)χmodpχ(1)=1χ(ac)=p12p1a=1p1b=1p1c=1p1d=1a¯cmodp(a2b2mp)(b2mp)(c2d2mp)(d2mp)+p12p1a=1p1b=1p1c=1p1d=1a¯cmodp(a2b2mp)(b2mp)(c2d2mp)(d2mp)=(p1)p1a=1p1b=1p1d=1(a2b2mp)(b2mp)(¯a2d2mp)(d2mp)=(p1)p1a=1p1b=1(1+(bp))(a2bmp)(bmp)p1d=1(1+(dp))(¯a2dmp)(dmp)=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(¯a2d1p)(d1p)+(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(mp)((¯a2d1)(d1)dp)+(p1)p1a=1p1b=1(mp)((a2b1)(b1)bp)p1d=1(¯a2d1p)(d1p)+(p1)p1a=1p1b=1(mp)((a2b1)(b1)bp)p1d=1(mp)((¯a2d1)(d1)dp):=A1+A2+A3+A4.

    Now we compute A1, A2, A3, A4 respectively. Noticing that χ(1)=1, from the properties of the complete residue system modulo p, we have

    p1b=1(a2b1p)(b1p)=p1b=0(a2b1p)(b1p)1=p1b=0(4a2p)((a2b1)(b1)p)1=p1b=0((2a2ba21)2(a21)2p)1=p1b=0(b2(a21)2p)1.

    Applying Lemma 2.3, we can get

    A1=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(¯a2d1p)(d1p)=(p1)p1a=1(p1b=0(b2(a21)2p)1)(p1d=0(d2(¯a21)2p)1)=(p1)[2p1b=0(b2p)p1d=0(d2p)+p2a=2p1b=0(b2(a21)2p)p1d=0(d2(¯a21)2p)]2(p1)p1a=1p1b=0(b2(a21)2p)+(p1)2=2p36p2+4.

    Then, we compute A2. With the aid of Lemma 2.4, we have

    A2=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(mp)((¯a2d1)(d1)dp)=(p1)p1a=1[p1b=0(b2(a21)2p)1]p1d=1(mp)((¯a2d1)(d1)dp)=(p1)2p1d=1(mp)((d1)2dp)(p1)p2a=2p1d=1(mp)((¯a2d1)(d1)dp)+(p1)2p1d=1(mp)(((p1)2d1)(d1)dp)(p1)p1a=1p1d=1(mp)((¯a2d1)(d1)dp)=(p23p+2)[p1d=1(mp)((d1)2dp)+p1d=1(mp)(((p1)2d1)(d1)dp)]2(p1)p2a=2p1d=1(mp)((a2d1)(d1)dp)=2(p23p+2)(mp)p1d=1((d1)2dp)4(p1)[(1)p12+1](mp)=2(p23p+2)(mp)p1b=2(bp)4(p1)[(1)p12+1](mp)=2(p23p+2)(mp)4(p1)[(1)p12+1](mp).

    Similarly, we have

    A3=2(p23p+2)(mp)4(p1)[(1)p12+1](mp).

    Note that

    A4=(p1)p1a=1p1b=1((a2b1)(b1)bp)p1d=1((¯a2d1)(d1)dp),

    which completes the proof of Theorem 1.3.

    Three Theorems are stated in the main results. The Theorem 1.1 obtains an exact computational formula for qa=1χ(ma+¯a), which broadens the scope of q by removing the condition p3mod4 in the previous article, where p is the prime divisor of q. The Theorem 1.2 derives a new identity for the mean value of it by adding some different ingredients. What's more, the Theorem 1.3 bridges the fourth power of Dirichlet characters with Legendre symbols of certain polynomials, which may be useful in the related future research. However, due to some technical reasons, we can only deal with the odd square-full number q case.

    The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work is supported by the National Natural Science Foundation of China (No. 11871317), and the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2021JC-29).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] M. Bestvina, R-trees in topology, geometry and group theory, In: Handbook of geometric topology, Amsterdam: North-Holland, 2002, 55–91.
    [2] C. Semple, M. Steel, Phylogenetics, Oxford: Oxford University Press, 2003. https://doi.org/10.1093/oso/9780198509424.002.0002
    [3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces, Publ. Math. Debrecen., 57 (2000), 31–37.
    [4] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30 (1989), 26–37
    [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11
    [6] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [7] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
    [8] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [9] P. Salimi, A. Latif, N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory A., 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
    [10] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst., 172 (2018), 481–490
    [11] S. A. Almezel, J. Ahmad, G. Marino, Fixed point theorems for generalized (αβ-ψ)-contractions in F-metric spaces with applications, Mathematics, 8 (2020), 584.
    [12] H. Faraji, N. Mirkov, Z. D. Mitrović, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenović, Some new results for (α,β)-admissible mappings in F-metric spaces with applications to integral equations, Symmetry, 14 (2022), 2429. https://doi.org/10.3390/sym14112429 doi: 10.3390/sym14112429
    [13] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
    [14] A. Latif, A. H. Alotaibi, M. Noorwali, Fixed point results via multivalued contractive type mappings involving a generalized distance on metric type spaces, J. Nonlinear Var. Anal., 8 (2024), 787–798. https://doi.org/10.23952/jnva.8.2024.5.06 doi: 10.23952/jnva.8.2024.5.06
    [15] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 212. https://doi.org/10.1186/1687-1812-2012-212 doi: 10.1186/1687-1812-2012-212
    [16] H. Isık, N. Hussain, A. R. Khan, Endpoint results for weakly contractive mappings in F-metric spaces with an application, Int. J. Nonlinear Anal. Appl., 11 (2020), 351–361. https://doi.org/10.22075/ijnaa.2020.20368.2148 doi: 10.22075/ijnaa.2020.20368.2148
    [17] N. Mlaiki, J. Ahmad, A. E. Almazrooei, Endpoints of generalized contractions in F-metric spaces with application to integral equations, J. Funct. Space., 2022 (2022), 3739382. https://doi.org/10.1155/2022/3739382 doi: 10.1155/2022/3739382
    [18] M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of α-ψ-Λ -contraction multivalued mappings in F-metric spaces with an application, J. Inequal. Appl., 2022 (2022), 113. https://doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9
    [19] K. H. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, Adv. Cont. Discr. Mod., 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
    [20] K. H. Zhao, J. Q. Liu, X. J. Lv, A unified approach to solvability and stability of multipoint BVPs for Langevin and Sturm-Liouville equations with CH-Fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
    [21] X. R. Kang, N. N. Fang, Some common coupled fixed point results for the mappings with a new contractive condition in a Menger PbM-metric space, J. Nonlinear Funct. Anal., 2023 (2023), 9. https://doi.org/10.23952/jnfa.2023.9 doi: 10.23952/jnfa.2023.9
    [22] J. Ahmad, A. S. Al-Rawashdeh, A. E. Al-Mazrooei, Fixed point results for (α,F)-contractions in orthogonal F-metric spaces with applications, J. Funct. Space., 2022 (2022), 8532797. https://doi.org/10.1155/2022/8532797 doi: 10.1155/2022/8532797
    [23] A. Asif, M. Nazam, M. Arshad, S. O. Kim, F-Metric, F-contraction and common fixed point theorems with applications, Mathematics, 7 (2019), 586. https://doi.org/10.3390/math7070586 doi: 10.3390/math7070586
    [24] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [25] H. Aleroeva, T. Aleroev, Some applications of fractional calculus, IOP Conf. Ser.: Mater. Sci. Eng., 747 (2020), 012046. https://doi.org/10.1088/1757-899X/747/1/012046 doi: 10.1088/1757-899X/747/1/012046
    [26] A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25–34. https://doi.org/10.1515/GMJ.2006.25 doi: 10.1515/GMJ.2006.25
    [27] G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4 doi: 10.1016/S0377-0427(00)00468-4
    [28] L. Spek, Y. A. Kuznetsov, S. A. van Gils, Neural field models with transmission delays and diffusion, J. Math. Neurosc., 10 (2000), 21. https://doi.org/10.1186/s13408-020-00098-5 doi: 10.1186/s13408-020-00098-5
    [29] F. A. Rihan, C. Tunc, S. H. Saker, S. Lakshmanan, R. Rakkiyappan, Applications of delay differential equations in biological systems, Complexity, 2018 (2018), 4584389. https://doi.org/10.1155/2018/4584389 doi: 10.1155/2018/4584389
  • This article has been cited by:

    1. Donghui Wu, Ying Zhao, Hong Sang, Shuanghe Yu, Reachable set estimation for switched T-S fuzzy systems with a switching dynamic memory event-triggered mechanism, 2024, 490, 01650114, 109050, 10.1016/j.fss.2024.109050
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(550) PDF downloads(42) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog