Research article

Application of fixed point theory to synaptic delay differential equations in neural networks

  • Received: 16 September 2024 Revised: 17 October 2024 Accepted: 18 October 2024 Published: 31 October 2024
  • MSC : 46S40, 47H10, 54H25

  • The objective of this research is to propose a new concept known as rational ($ \alpha \eta $-$ \psi) $-contractions in the framework of $ \mathcal{F} $-metric spaces and to establish several fixed point theorems. These theorems help to generalize and unify various established fixed point results from the existing literature. To demonstrate the practical effectiveness of our approach, we provide a significant example that confirms our findings. In addition, we introduce a generalized multivalued ($ \alpha $-$ \psi) $-contraction concept in $ \mathcal{F} $-metric spaces and use it to prove fixed point theorems specifically designed for multivalued mappings. To demonstrate the practical utility of our findings, we apply our main results to the solution of synaptic delay differential equations in neural networks.

    Citation: Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad. Application of fixed point theory to synaptic delay differential equations in neural networks[J]. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495

    Related Papers:

  • The objective of this research is to propose a new concept known as rational ($ \alpha \eta $-$ \psi) $-contractions in the framework of $ \mathcal{F} $-metric spaces and to establish several fixed point theorems. These theorems help to generalize and unify various established fixed point results from the existing literature. To demonstrate the practical effectiveness of our approach, we provide a significant example that confirms our findings. In addition, we introduce a generalized multivalued ($ \alpha $-$ \psi) $-contraction concept in $ \mathcal{F} $-metric spaces and use it to prove fixed point theorems specifically designed for multivalued mappings. To demonstrate the practical utility of our findings, we apply our main results to the solution of synaptic delay differential equations in neural networks.



    加载中


    [1] M. Bestvina, R-trees in topology, geometry and group theory, In: Handbook of geometric topology, Amsterdam: North-Holland, 2002, 55–91.
    [2] C. Semple, M. Steel, Phylogenetics, Oxford: Oxford University Press, 2003. https://doi.org/10.1093/oso/9780198509424.002.0002
    [3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces, Publ. Math. Debrecen., 57 (2000), 31–37.
    [4] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30 (1989), 26–37
    [5] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11
    [6] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [7] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
    [8] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $ \alpha $-$\psi $-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [9] P. Salimi, A. Latif, N. Hussain, Modified $\alpha $-$\psi$-contractive mappings with applications, Fixed Point Theory A., 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
    [10] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst., 172 (2018), 481–490
    [11] S. A. Almezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$-metric spaces with applications, Mathematics, 8 (2020), 584.
    [12] H. Faraji, N. Mirkov, Z. D. Mitrović, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenović, Some new results for ($\alpha, \beta $)-admissible mappings in $\mathcal{F}$-metric spaces with applications to integral equations, Symmetry, 14 (2022), 2429. https://doi.org/10.3390/sym14112429 doi: 10.3390/sym14112429
    [13] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
    [14] A. Latif, A. H. Alotaibi, M. Noorwali, Fixed point results via multivalued contractive type mappings involving a generalized distance on metric type spaces, J. Nonlinear Var. Anal., 8 (2024), 787–798. https://doi.org/10.23952/jnva.8.2024.5.06 doi: 10.23952/jnva.8.2024.5.06
    [15] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of $\alpha $-$\psi $-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 212. https://doi.org/10.1186/1687-1812-2012-212 doi: 10.1186/1687-1812-2012-212
    [16] H. Isık, N. Hussain, A. R. Khan, Endpoint results for weakly contractive mappings in $\mathcal{F}$-metric spaces with an application, Int. J. Nonlinear Anal. Appl., 11 (2020), 351–361. https://doi.org/10.22075/ijnaa.2020.20368.2148 doi: 10.22075/ijnaa.2020.20368.2148
    [17] N. Mlaiki, J. Ahmad, A. E. Almazrooei, Endpoints of generalized contractions in $\mathcal{F}$-metric spaces with application to integral equations, J. Funct. Space., 2022 (2022), 3739382. https://doi.org/10.1155/2022/3739382 doi: 10.1155/2022/3739382
    [18] M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of $\alpha _{\ast }$-$\psi $-$\Lambda $ -contraction multivalued mappings in $\mathcal{F}$-metric spaces with an application, J. Inequal. Appl., 2022 (2022), 113. https://doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9
    [19] K. H. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via $F$-contractive mapping, Adv. Cont. Discr. Mod., 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
    [20] K. H. Zhao, J. Q. Liu, X. J. Lv, A unified approach to solvability and stability of multipoint BVPs for Langevin and Sturm-Liouville equations with CH-Fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
    [21] X. R. Kang, N. N. Fang, Some common coupled fixed point results for the mappings with a new contractive condition in a Menger $PbM$-metric space, J. Nonlinear Funct. Anal., 2023 (2023), 9. https://doi.org/10.23952/jnfa.2023.9 doi: 10.23952/jnfa.2023.9
    [22] J. Ahmad, A. S. Al-Rawashdeh, A. E. Al-Mazrooei, Fixed point results for ($\alpha, \bot _{\mathcal{F}}$)-contractions in orthogonal $ \mathcal{F}$-metric spaces with applications, J. Funct. Space., 2022 (2022), 8532797. https://doi.org/10.1155/2022/8532797 doi: 10.1155/2022/8532797
    [23] A. Asif, M. Nazam, M. Arshad, S. O. Kim, $\mathcal{F}$-Metric, $F$-contraction and common fixed point theorems with applications, Mathematics, 7 (2019), 586. https://doi.org/10.3390/math7070586 doi: 10.3390/math7070586
    [24] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [25] H. Aleroeva, T. Aleroev, Some applications of fractional calculus, IOP Conf. Ser.: Mater. Sci. Eng., 747 (2020), 012046. https://doi.org/10.1088/1757-899X/747/1/012046 doi: 10.1088/1757-899X/747/1/012046
    [26] A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25–34. https://doi.org/10.1515/GMJ.2006.25 doi: 10.1515/GMJ.2006.25
    [27] G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4 doi: 10.1016/S0377-0427(00)00468-4
    [28] L. Spek, Y. A. Kuznetsov, S. A. van Gils, Neural field models with transmission delays and diffusion, J. Math. Neurosc., 10 (2000), 21. https://doi.org/10.1186/s13408-020-00098-5 doi: 10.1186/s13408-020-00098-5
    [29] F. A. Rihan, C. Tunc, S. H. Saker, S. Lakshmanan, R. Rakkiyappan, Applications of delay differential equations in biological systems, Complexity, 2018 (2018), 4584389. https://doi.org/10.1155/2018/4584389 doi: 10.1155/2018/4584389
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(215) PDF downloads(36) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog