This study examines a class of Boussinesq equations with sixth-order using two promising analytical methods. The equation in question is among the frontier evolution equations with significant relevance in nonlinear lattice dynamics. To study this model, the Kudryashov method and the modified auxiliary equation method are employed due to their analytical precision in constructing several exact wave solutions for the model under examination. As expected, the methods yield many valid solution sets that satisfy all the underlying assumptions of the model. Finally, some of the obtained wave solutions are graphically illustrated, taking into account the parameter values of the model.
Citation: Ali Althobaiti. Novel wave solutions for the sixth-order Boussinesq equation arising in nonlinear lattice dynamics[J]. AIMS Mathematics, 2024, 9(11): 30972-30988. doi: 10.3934/math.20241494
This study examines a class of Boussinesq equations with sixth-order using two promising analytical methods. The equation in question is among the frontier evolution equations with significant relevance in nonlinear lattice dynamics. To study this model, the Kudryashov method and the modified auxiliary equation method are employed due to their analytical precision in constructing several exact wave solutions for the model under examination. As expected, the methods yield many valid solution sets that satisfy all the underlying assumptions of the model. Finally, some of the obtained wave solutions are graphically illustrated, taking into account the parameter values of the model.
[1] | M. J. Ablowitz, Nonlinear dispersive waves: Asymptotic analysis and solitons, Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511998324 |
[2] | L. Akinyemi, H. Rezazadeh, S.-W. Yao, M. A. Akbar, M. M. A. Khater, A. Jhangeer, et al., Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411. https://doi.org/10.1016/j.rinp.2021.104411 doi: 10.1016/j.rinp.2021.104411 |
[3] | J. Boussinesq, Theorie de I'intumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci., 72 (1871), 755–759. |
[4] | S. Li, M. Chen, B. Zhang, Wellposedness of the sixth order Boussinesq equation with non-homogeneous boundary values on a bounded domain, Phys. D: Nonlinear Phenom., 389 (2019), 13–23. https://doi.org/10.1016/j.physd.2018.09.006 doi: 10.1016/j.physd.2018.09.006 |
[5] | H. Yang, New traveling wave solutions for the sixth-order Boussinesq equation, Fundam. J. Math. Appl., 6 (2023), 1–11. https://doi.org/10.33401/fujma.1144277 doi: 10.33401/fujma.1144277 |
[6] | K. A. Khalid, R. I. Nuruddeen, K. R. Rasla, New hyperbolic structures for the conformable time-fractional variant Bussinesq equations, Opt. Quant. Electron., 50 (2018), 61. https://doi.org/10.1007/s11082-018-1330-6 doi: 10.1007/s11082-018-1330-6 |
[7] | N. Naila, M. N. Rafiq, U. Younas, D. Lu, Sensitivity analysis and solitary wave solutions to the (2+1)-dimensional Boussinesq equation in dispersive media, Mod. Phys. Lett. B, 38 (2024), 2350227. https://doi.org/10.1142/S0217984923502275 doi: 10.1142/S0217984923502275 |
[8] | A. Wazwaz, A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation, Filomat, 31 (2017), 831–840. https://doi.org/10.2298/FIL1703831W doi: 10.2298/FIL1703831W |
[9] | A. M. Mubaraki, R. I. Nuruddeen, K. K. Ali, J. F. Gomez-Aguilar, Additional solitonic and other analytical solutions for the higher-order Boussinesq Burgers equation, Opt. Quant. Electron., 56 (2024), 165. https://doi.org/10.1007/s11082-023-05744-2 doi: 10.1007/s11082-023-05744-2 |
[10] | J. S. Russell, Report on Waves: Made to the Meetings of the British Association in 1842–1843, London: Richard and John E Taylor, 1845. |
[11] | N. A. Kudryashov, One method for finnding exact solutions of nonlinear differential equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248–2253. https://doi.org/10.1016/j.cnsns.2011.10.016 doi: 10.1016/j.cnsns.2011.10.016 |
[12] | E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A, 372 (2008), 1048–1060. https://doi.org/10.1016/j.physleta.2007.09.003 doi: 10.1016/j.physleta.2007.09.003 |
[13] | Y. L. Ma, B. Q. Li, Doubly periodic waves, bright and dark solitons for a coupled monomode step-index optical fiber system, Opt. Quant. Electron., 50 (2018), 443. https://doi.org/10.1007/s11082-018-1692-9 doi: 10.1007/s11082-018-1692-9 |
[14] | A. R. Seadawy, Nonlinear wave solutions of the three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma, Phys. A: Stat. Mech. Appl., 439 (2015), 124–131. https://doi.org/10.1016/j.physa.2015.07.025 doi: 10.1016/j.physa.2015.07.025 |
[15] | Y.-L. Ma, B.-Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Mathematics, 5 (2020), 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080 |
[16] | S. T. Rizvi, A. R. Seadawy, N. Farah, S. Ahmad, A. Althobaiti, The interactions of dark, bright, parabolic optical solitons with solitary wave solutions for nonlinear Schrodinger-Poisson equation by Hirota method, Opt. Quant. Electron., 56 (2024), 1162. https://doi.org/10.1007/s11082-024-07008-z doi: 10.1007/s11082-024-07008-z |
[17] | C. Park, R. I. Nuruddeen, K. K. Ali, L. Muhammad, M. S. Osman, D. Balean, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg–de Vries equations, Adv. Differ. Equ., 2020 (2020), 627. https://doi.org/10.1186/s13662-020-03087-w doi: 10.1186/s13662-020-03087-w |
[18] | S. Shukri, K. Al-Khaled, The extended tan method for solving systems of nonlinear wave equations, Appl. Math. Comput., 217 (2010), 1997–2006. https://doi.org/10.1016/j.amc.2010.06.058 doi: 10.1016/j.amc.2010.06.058 |
[19] | H. O. Bakodah, M. A. Banaja, A. A. Alshaery, A. A. Al Qarni, Numerical solution of dispersive optical solitons with Schrodinger-Hirota equation by improved Adomian decomposition method, Math. Probl. Eng., 2019 (2019), 2960912. https://doi.org/10.1155/2019/2960912 doi: 10.1155/2019/2960912 |
[20] | M. A. Banaja, A. A. Al Qarni, H. O. Bakodah, Q. Zhou, S. P. Moshokoa, A. Biswas, The investigate of optical solitons in cascaded system by improved adomian decomposition scheme, Optik, 130 (2017), 1107–1114. https://doi.org/10.1016/j.ijleo.2016.11.125 doi: 10.1016/j.ijleo.2016.11.125 |
[21] | H. O. Bakodah, A. A. Al Qarni, M. A. Banaja, Q. Zhou, S. P. Moshokoa, A. Biswas, Bright and dark thirring optical solitons with improved Adomian decomposition method, Optik, 130 (2017), 1115–1123. https://doi.org/10.1016/j.ijleo.2016.11.123 doi: 10.1016/j.ijleo.2016.11.123 |
[22] | R. T. Alqahtani, M. M. Babatin, A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109–114. https://doi.org/10.1016/j.ijleo.2017.09.112 doi: 10.1016/j.ijleo.2017.09.112 |
[23] | R. Alrashed, R. B. Djob, A. A. Alshaery, S. A. Alkhateeb, R. I. Nuruddeen, Collective variables approach to the vector-coupled system of Chen-Lee-Liu equation, Chaos, Solitons Fract., 161 (2022), 112315. https://doi.org/10.1016/j.chaos.2022.112315 doi: 10.1016/j.chaos.2022.112315 |
[24] | J. Biazar, H. Aminikhah, Exact and numerical solutions for non-linear Burgers equation by VIM, Alex. Eng. J., 47 (2009), 1394–1400. https://doi.org/10.1016/j.mcm.2008.12.006 doi: 10.1016/j.mcm.2008.12.006 |
[25] | A. Alsisi, Analytical and numerical solutions to the Klein-Gordon model with cubic nonlinearity, Alex. Eng. J., 99 (2024), 31–37. https://doi.org/10.1016/j.aej.2024.04.076 doi: 10.1016/j.aej.2024.04.076 |
[26] | M. A. Alqudah, R. Ashraf, S. Rashid, J. Singh, Z. Hammouch, T. Abdeljawad, Novel numerical investigations of fuzzy Cauchy reaction-diffusion models via generalized fuzzy fractional derivative operators, Fractal Fract., 5 (2021), 151. https://doi.org/10.3390/fractalfract5040151 doi: 10.3390/fractalfract5040151 |
[27] | R. Shakhanda, P. Goswami, J.-H. He, A. Althobaiti, An approximate solution of the time-fractional two-mode coupled Burgers equations, Fractal Fract., 5 (2021), 196. https://doi.org/10.3390/fractalfract5040196 doi: 10.3390/fractalfract5040196 |
[28] | C. I. Christov, G. Maugin, M. G. Velarde, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. A, 54 (1996), 3621. https://doi.org/10.1103/PhysRevE.54.3621 doi: 10.1103/PhysRevE.54.3621 |
[29] | J. Zhou, H. Zhang, Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, J. Nonlinear Sci, 31 (2021), 76. https://doi.org/10.1007/s00332-021-09730-4 doi: 10.1007/s00332-021-09730-4 |
[30] | J. Liu, X. Wang, J. Zhou, H. Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, Discrete Contin. Dyn. Syst. S, 14 (2021), 4321–4335. https://doi.org/10.3934/dcdss.2021108 doi: 10.3934/dcdss.2021108 |
[31] | A. Kilicman, R. Silambarasan, Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation, Symmetry, 10 (2018), 527. https://doi.org/10.3390/sym10100527 doi: 10.3390/sym10100527 |
[32] | A. M. Elsherbeny, A. H. Arnous, A. Biswas, O. González-Gaxiola, L. Moraru, S. Moldovanu, et al., Highly dispersive optical solitons with four forms of self-phase modulation, Symmetry, 9 (2023), 51. https://doi.org/10.3390/universe9010051 doi: 10.3390/universe9010051 |
[33] | S. Althobaiti, A Althobaiti, Analytical solutions of the extended Kadomtsev-Petviashvili equation in nonlinear media, Open Phys., 21 (2023), 20230106. https://doi.org/10.1515/phys-2023-0106 doi: 10.1515/phys-2023-0106 |
[34] | A. Kashif, A.R. Seadawy, S. T. R. Rizvi, N. Aziz, A. Althobaiti, Dynamical properties and travelling wave analysis of Rangwala-Rao equation by complete discrimination system for polynomials, Opt. Quant. Electron., 56 (2024), 1081. https://doi.org/10.1007/s11082-024-06894-7 doi: 10.1007/s11082-024-06894-7 |
[35] | B.-Q. Li, A.-M. Wazwaz, Y.-L. Ma, Two new types of nonlocal Boussinesq equations in water waves: Bright and dark soliton solutions, Chinese J. Phys., 77 (2022), 1782–1788. https://doi.org/10.1016/j.cjph.2021.11.008 doi: 10.1016/j.cjph.2021.11.008 |
[36] | Y.-L. Ma, B.-Q. Li, Bifurcation solitons and breathers for the nonlocal Boussinesq equations, Appl. Math. Lett., 124 (2022), 107677. https://doi.org/10.1016/j.aml.2021.107677 doi: 10.1016/j.aml.2021.107677 |
[37] | A. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 713–723. https://doi.org/10.1016/S0096-3003(03)00745-8 doi: 10.1016/S0096-3003(03)00745-8 |
[38] | A. Wazwaz, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467–1475. https://doi.org/10.1016/j.amc.2006.11.013 doi: 10.1016/j.amc.2006.11.013 |
[39] | A. M. Mubaraki, H. Kim, R. I. Nuruddeen, U. Akram, Y. Akbar, Wave solutions and numerical validation for the coupled reaction-advection-diffusion dynamical model in a porous medium, Commun. Theor. Phys., 74 (2022), 125002. https://doi.org/10.1088/1572-9494/ac822a doi: 10.1088/1572-9494/ac822a |
[40] | N. A. Kudryashov, K. E. Shilnikov, A note on "The tanh-coth method combined with the Riccati equation for solving nonlinear coupled equation in mathematical physics, J. King Saud Univ. - Sci, 24 (2012), 397–381. https://doi.org/10.1016/j.jksus.2012.06.001 doi: 10.1016/j.jksus.2012.06.001 |