Darbo type $ \mathcal{Z}_{\rm{m}} $-contraction and Darbo type $ \mathcal{L}_{\rm{m}} $-contraction are introduced and some fixed point results are established for such contraction mappings. As an application, we prove the existence of solution of a Caputo fractional Volterra-Fredholm integro-differential equation via integral type boundary conditions and verify the validity of our application by an appropriate example.
Citation: Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović. Darbo-Type $ \mathcal{Z}_{\rm{m}} $ and $ \mathcal{L}_{\rm{m}} $ contractions and its applications to Caputo fractional integro-differential equations[J]. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372
Darbo type $ \mathcal{Z}_{\rm{m}} $-contraction and Darbo type $ \mathcal{L}_{\rm{m}} $-contraction are introduced and some fixed point results are established for such contraction mappings. As an application, we prove the existence of solution of a Caputo fractional Volterra-Fredholm integro-differential equation via integral type boundary conditions and verify the validity of our application by an appropriate example.
[1] | J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Uni. Caroline, 21 (1980), 131–143. |
[2] | L. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann., 70 (1912), 97–115. |
[3] | S. H. Cho, Fixed point theorems for $\mathcal{L}$-contractions in generalized metric spaces, Abstr. Appl. Anal., 2018 (2018), 1–6. |
[4] | J. Chen, X. Tang, Generalizations of Darbo's fixed point theorem via simulation functions with application to functional integral equations, J. Comput. Appl. Math., 296 (2016), 564–575. doi: 10.1016/j.cam.2015.10.012 |
[5] | G. Darbo, Punti unitti in transformazioni a condominio non compatto, Rendiconti del Seminario Matematico della Universita di Padova, 24 (1955), 84–92. |
[6] | H. Isik, N. B. Gungor, C. Park, S. Y. Jang, Fixed point theorems for almost $Z$-contractions with an application, Mathematics, 6 (2018), 37. doi: 10.3390/math6030037 |
[7] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 1–8. doi: 10.1186/1029-242X-2014-1 |
[8] | M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1–9. doi: 10.1017/S0004972700001659 |
[9] | F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29 (2015), 1189–1194. doi: 10.2298/FIL1506189K |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, elsevier, 204 (2006). |
[11] | K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1930), 301–309. |
[12] | A. F. Roldán-Ĺpez-de-Hierro, E. Karapínar, C. Roldn-Lpez-de-Hierro, J. Martnez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. doi: 10.1016/j.cam.2014.07.011 |
[13] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analy. Theory Methods Appl., 47 (2001), 2683–2693. doi: 10.1016/S0362-546X(01)00388-1 |
[14] | B. Samet, C. Vetro, O. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Analy. Theory Methods Appl., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014 |
[15] | J. Schauder, Der fixpunktsatz in funktionalraiimen, Stud. Math., 2 (1930), 171–180. doi: 10.4064/sm-2-1-171-180 |
[16] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 1–6. doi: 10.1186/1687-1812-2012-1 |