We consider the two-point boundary value problems for a nonlinear one-dimensional second-order differential equation with involution in the second derivative and in lower terms. The questions of existence and uniqueness of the classical solution of two-point boundary value problems are studied. The definition of the Green's function is generalized for the case of boundary value problems for the second-order linear differential equation with involution, indicating the points of discontinuities and the magnitude of discontinuities of the first derivative. Uniform estimates for the Green's function of the linear part of boundary value problems are established. Using the contraction mapping principle and the Schauder fixed point theorem, theorems on the existence and uniqueness of solutions to the boundary value problems are proved. The results obtained in this paper cover the boundary value problems for one-dimensional differential equations with and without involution in the lower terms.
Citation: Abdissalam Sarsenbi, Abdizhahan Sarsenbi. Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability[J]. AIMS Mathematics, 2023, 8(11): 26275-26289. doi: 10.3934/math.20231340
We consider the two-point boundary value problems for a nonlinear one-dimensional second-order differential equation with involution in the second derivative and in lower terms. The questions of existence and uniqueness of the classical solution of two-point boundary value problems are studied. The definition of the Green's function is generalized for the case of boundary value problems for the second-order linear differential equation with involution, indicating the points of discontinuities and the magnitude of discontinuities of the first derivative. Uniform estimates for the Green's function of the linear part of boundary value problems are established. Using the contraction mapping principle and the Schauder fixed point theorem, theorems on the existence and uniqueness of solutions to the boundary value problems are proved. The results obtained in this paper cover the boundary value problems for one-dimensional differential equations with and without involution in the lower terms.
[1] | A. Cabada, G. Infante, F. Adrián, F. Tojo, Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Method. Nonl. An., 47 (2016), 265–287. https://doi.org/10.12775/TMNA.2016.005 doi: 10.12775/TMNA.2016.005 |
[2] | R. Figueroa, R. L. Pouso, Minimal and maximal solutions to second-order boundary value problems with state-dependent deviating arguments, B. Lond. Math. Soc., 43 (2011), 164–174. https://doi.org/10.1112/blms/bdq091 doi: 10.1112/blms/bdq091 |
[3] | J. Wiener, A. R. Aftabizadeh, Boundary value problems for differential equations with reflection of argument, Int. J. Math. Math. Sci., 8 (1985), 151–163. https://doi.org/10.1155/S016117128500014X doi: 10.1155/S016117128500014X |
[4] | C. P. Gupta, Two-point boundary value problems involving reflection of the argument, Int. J. Math. Math. Sci., 10 (1987), 361–371. https://doi.org/10.1155/S0161171287000425 doi: 10.1155/S0161171287000425 |
[5] | C. P. Gupta, Existence and uniqueness theorems for boundary value problems involving reflection of the argument, Nonlinear Anal.-Theor., 11 (1987), 1075–1083. https://doi.org/10.1016/0362-546X(87)90085-X doi: 10.1016/0362-546X(87)90085-X |
[6] | C. P. Gupta, Boundary value problems for differential equations in Hilbert spaces involving reflection of the argument, J. Math. Anal. Appl., 128 (1987), 375–388. https://doi.org/10.1016/0022-247X(87)90190-9 doi: 10.1016/0022-247X(87)90190-9 |
[7] | D. O'Regan, Existence results for differential equations with reflection of the argument, J. Aust. Math. Soc., 57 (1994), 237–260. https://doi.org/10.1017/S1446788700037538 doi: 10.1017/S1446788700037538 |
[8] | D. D. Hai, Two point boundary value problem for differential equations with reflection of argument, J. Math. Anal. Appl., 144 (1989), 313–321. https://doi.org/10.1016/0022-247X(89)90337-5 doi: 10.1016/0022-247X(89)90337-5 |
[9] | S. Zhang, Z. Gao, D. Piao, Pseudo-almost periodic viscosity solutions of second-order nonlinear parabolic equations, Nonlinear Anal.-Theor., 74 (2011), 6970–6980. https://doi.org/10.1016/j.na.2011.07.018 doi: 10.1016/j.na.2011.07.018 |
[10] | A. R. Aftabizadeh, Y. K. Huang, J. Wiener, Bounded solutions for differential equations with reflection of the argument, J. Math. Anal. Appl., 135 (1988), 31–37. https://doi.org/10.1016/0022-247X(88)90139-4 doi: 10.1016/0022-247X(88)90139-4 |
[11] | D. Piao, Periodic and almost periodic solutions for differential equations with reflection of the argument, Nonlinear Anal.-Theor., 57 (2004), 633–637. https://doi.org/10.1016/j.na.2004.03.017 doi: 10.1016/j.na.2004.03.017 |
[12] | D. Piao, Pseudo almost periodic solutions for differential equations involving reflection of the argument, J. Korean Math. Soc., 41 (2004), 747–754. https://doi.org/10.4134/JKMS.2004.41.4.747 doi: 10.4134/JKMS.2004.41.4.747 |
[13] | M. Miraoui, Measure pseudo almost periodic solutions for differential equations with reflection, Appl. Anal., 101 (2022), 938–951. https://doi.org/10.1080/00036811.2020.1766026 doi: 10.1080/00036811.2020.1766026 |
[14] | P. Wang, D. Lassoued, S. Abbas, A Zada, T Li, On almost periodicity of solutions of second-order differential equations involving reflection of the argument, Adv. Differ. Equ., 2019 (2019), 4. https://doi.org/10.1186/s13662-018-1938-7 doi: 10.1186/s13662-018-1938-7 |
[15] | M. Miraoui, D. D. Repovš, Existence results for integro-differential equations with reflection, Numer. Func. Anal. Opt., 42 (2021), 919–934. https://doi.org/10.1080/01630563.2021.1933524 doi: 10.1080/01630563.2021.1933524 |
[16] | M. Miraoui, μ-Pseudo-almost automorphic solutions for some differential equations with reflection of the argument, Numer. Func. Anal. Opt., 38 (2017), 376–394. https://doi.org/10.1080/01630563.2017.1279175 doi: 10.1080/01630563.2017.1279175 |
[17] | T. F. Ma, E. S. Miranda, M. B. De S. Cortes, A nonlinear differential equation involving reflection of the argument, Arch. Math., 40 (2004), 63–68. Available from: https://www.emis.de/journals/AM/04-1/index.html. |
[18] | E. Mussirepova, A. A. Sarsenbi, A. M. Sarsenbi, Solvability of mixed problems for the wave equation with reflection of the argument, Math. Meth. Appl. Sci., 45 (2022), 11262–11271. https://doi.org/10.1002/mma.8448 doi: 10.1002/mma.8448 |
[19] | E. Mussirepova, A. A. Sarsenbi, A. M. Sarsenbi, The inverse problem for the heat equation with reflection of the argument and with a complex coefficient, Bound. Value Probl., 2022 (2022), 99. https://doi.org/10.1186/s13661-022-01675-1 doi: 10.1186/s13661-022-01675-1 |
[20] | L. V. Kritskov, A. M. Sarsenbi, Basicity in Lp of root functions for differential equations with involution, Electron. J. Differ. Eq., 278 (2015), 1–9. Available from: https://ejde.math.txstate.edu/. |
[21] | L. V. Kritskov, M. A. Sadybekov, A. M. Sarsenbi, Nonlocal spectral problem for a second-order differential equation with an involution, Bull. Karaganda Univ.-Math., 3 (2018), 53–60. https://doi.org/10.31489/2018M3/53-60 doi: 10.31489/2018M3/53-60 |
[22] | A. A. Sarsenbi, A. M. Sarsenbi, On eigenfunctions of the boundary value problems for second order differential equations with involution, Symmetry, 13 (2021), 1972. https://doi.org/10.3390/sym13101972 doi: 10.3390/sym13101972 |
[23] | A. Signorini, Sul moto di un punto soggelto a resistenza idraulica e forza di richiamo, Atti R. Ist. Veneto di Sc. Lett. ed. Arti., 73 (1913–1916), 803–858. |
[24] | J. P. V. Zandt, Oscillating systems damped by resistance proportional to the square of the velocity, Phys. Rev., 10 (1917), 415–431. |
[25] | H. Cartan, E. Cartan, Note sur la generation des oscillations entretenues, Ann. PTT, 14 (1935), 1196–1207. |
[26] | F. Tricomi, Integrazione di un'equazione differenziale presentatasi in elettrotecnica, Ann. Scuola Norm.-Sci., 1933, 1–20. |
[27] | G. Duffing, Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung, Berlin, 1918. |
[28] | L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc., 23 (1927), 542–548. |
[29] | J. Wiener, Generalized solutions of functional differential equations, Singapore, New Jersey, London, Hong Kong, World Sci., 1993. |
[30] | D. Przeworska-Rolewicz, Equations with transformed argument: An algebraic approach, Amsterdam, Warszawa, Elsevier-PWN, 1973. |
[31] | A. Cabada, F. A. F. Tojo, Differential equations with involutions, New York, Atlantis Press, 2015. |
[32] | C. Gao, M. Ran, Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition, AIMS Math., 5 (2020), 904–922. https://doi.org/10.3934/math.2020062 doi: 10.3934/math.2020062 |
[33] | Z. Bai, W. Lian, Y. Wei, S. Sun, Solvability for some fourth order two-point boundary value problems, AIMS Math., 5 (2020), 4983–4994. https://doi.org/10.3934/math.2020319 doi: 10.3934/math.2020319 |
[34] | K. Li, P. Wang, Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions, AIMS Math., 7 (2022), 11487–11508. https://doi.org/10.3934/math.2022640 doi: 10.3934/math.2022640 |
[35] | Y. Zhang, L. Chen, Positive solution for a class of nonlinear fourth-order boundary value problem, AIMS Math., 8 (2023), 1014–1021. https://doi.org/10.3934/math.2023049 doi: 10.3934/math.2023049 |
[36] | A. A. Sarsenbi, E. Mussirepova, Green's function of a boundary value problem for a second-order differential equation with involution, Bull. Nation. Eng. Acad. Repub. Kazakhstan, 4 (2022), 195–202. |
[37] | K. Rektorys, Survey of applicable mathematics, London, Iliffe, 1969. |
[38] | W. Rudin, Principles of mathematical analysis, International series in pure and applied mathematics, 1976. |