Nowadays, the subclasses of analytic functions in terms of fuzzy subsets are studied by various scholars and some of these concepts are extended using the $ q- $theory of functions. In this inspiration, we introduce certain subclasses of analytic function by using the notion of fuzzy subsets along with the idea of $ q- $calculus. We present the $ q- $extensions of the fuzzy spiral-like functions of a complex order. We generalize this class using the $ q- $analogues of the Ruscheweyh derivative and Srivastava-Attiya operators. Various interesting properties are examined for the newly defined subclasses. Also, some previously investigated results are deduced as the corollaries of our major results.
Citation: A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă. Study of the fuzzy $ q- $spiral-like functions associated with the generalized linear operator[J]. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341
Nowadays, the subclasses of analytic functions in terms of fuzzy subsets are studied by various scholars and some of these concepts are extended using the $ q- $theory of functions. In this inspiration, we introduce certain subclasses of analytic function by using the notion of fuzzy subsets along with the idea of $ q- $calculus. We present the $ q- $extensions of the fuzzy spiral-like functions of a complex order. We generalize this class using the $ q- $analogues of the Ruscheweyh derivative and Srivastava-Attiya operators. Various interesting properties are examined for the newly defined subclasses. Also, some previously investigated results are deduced as the corollaries of our major results.
[1] | L. A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., 19 (2011), 97–103. |
[3] | S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298–305. http://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6 |
[4] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171. |
[5] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 3 (2012), 55–64. |
[6] | I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, Int. J. Comput. Commun. Control, 12 (2017), 748–789. |
[7] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248. |
[8] | G. I. Oros, G. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat., 19 (2012), 83–87. |
[9] | E. A. Haydar, On fuzzy differential subordination, Math. Moravica, 19 (2015), 123–129. |
[10] | A. A. Lupas, A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative, J. Comput. Anal. Appl., 15 (2013), 1476–1483. |
[11] | E. Rapeanu, Continuation method for boundary value problems with uniform elliptical operators, J. Sci. Arts, 3 (2011), 273–277. |
[12] | A. A. Lupas, A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Comput. Anal. Appl., 25 (2018), 1116–1124. |
[13] | E. Rapeanu, Approximation by projection of some operators, Analele Universităţii Maritime Constanţa, 11 (2010), 216–218. |
[14] | A. K. Wanas, A. H. Majeed, Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci. Int., 30 (2018), 297–302. |
[15] | A. R. S. Juma, M. H. Saloomi, Generalized Differential Operator on Bistarlike and Biconvex Functions Associated by Quasi-Subordination, J. Phys.: Conf. Ser., 1003 (2018), 012046. http://doi.org/10.1088/1742-6596/1003/1/012046 doi: 10.1088/1742-6596/1003/1/012046 |
[16] | E. Deniz, M. Çağlar, H. Orhan, The Fekete-Szego problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J., 35 (2012), 439–462. |
[17] | A. Saha, S. Azami, D. Breaz, E. Rapeanu, S. K. Hui, Evolution for First Eigenvalue of $L_{T, f}$ on an Evolving Riemannian Manifold, Mathematics, 10 (2022), 4614. http://doi.org/10.3390/math10234614 doi: 10.3390/math10234614 |
[18] | E. A. Totoi, L. I. Cotîrlă, Preserving Classes of Meromorphic Functions through Integral Operators, Symmetry, 14 (2022), 1545. http://doi.org/10.3390/sym14081545 doi: 10.3390/sym14081545 |
[19] | S. Kazimoğlu, E. Deniz, L. I. Cotîrlă, Geometric Properties of Generalized Integral Operators Related to The Miller–Ross Function, Axioms, 12 (2023), 563. http://doi.org/10.3390/axioms12060563 doi: 10.3390/axioms12060563 |
[20] | S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy $\alpha-$convex functions, AIMS Mathematics, 8 (2022), 1375–1383. http://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069 |
[21] | K. I. Noor, M. A. Noor, Fuzzy differential subordination involving generalized Noor-Salagean operator, Inf. Sci. Lett., 11 (2022), 1905–1911. http://doi.org/10.18576/isl/110606 doi: 10.18576/isl/110606 |
[22] | F. M. Sakar, Estimate for Initial Tschebyscheff Polynomials Coefficients on a Certain Subclass of Bi-univalent Functions Defined by Salagean Differential Operator, Acta Univ. Apulensis, 54 (2018), 45–54. |
[23] | A. R. S. Juma, A. Al-Fayadh, S. P. Vijayalakshmi, T. V. Sudharsan, Upper bound on the third hankel determinant for the class of univalent functions using an integral operator, Afr. Mat., 33 (2022), 56. http://doi.org/10.1007/s13370-022-00991-0 doi: 10.1007/s13370-022-00991-0 |
[24] | D. Breaz, K. R. Karthikeyan, E. Umadevi, A. Senguttuvan, Some properties of Bazilevic functions involving Srivastava–Tomovski operator, Axioms, 11 (2022), 687. http://doi.org/10.3390/axioms11120687 doi: 10.3390/axioms11120687 |
[25] | S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with $q$-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. http://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336 |
[26] | A. F. Azzam, S. A. Shah, A. Alburaikan, S. M. El-Deeb, Certain inclusion properties for the class of $q-$analogue of fuzzy $\alpha-$-convex functions, Symmetry, 15 (2023), 509. http://doi.org/10.3390/sym15020509 doi: 10.3390/sym15020509 |
[27] | A. A. Azzam, S. A. Shah, A. Catas, L.-I. Cotîrlă, On fuzzy spiral-like functions associated with the family of inear operators, Fractal Fract., 7 (2023), 145. http://doi.org/10.3390/fractalfract7020145 doi: 10.3390/fractalfract7020145 |
[28] | S. G. Gal, A. I. Ban, Elemente de matematică fuzzy (In Romanian), Romaia: Editura Universităţii din Oradea, 1996. |
[29] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, New York, Basel: Marcel Dekker, 2000. |
[30] | F. H. Jackson, XI.—On q-functions and a certain difference operator, Trans. Royal Soc. Edin., 46 (1908), 253–281. http://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[31] | H. Exton, $q$-Hypergeomtric functions and applications, Chichester: Ellis Horwood Limited, 1983. |
[32] | U. A. Ezeafulukwe, M. Darus, A note on $q$-calculus, Fasciculi Math., 55 (2015), 53–63. http://doi.org/10.1515/fascmath-2015-0014 doi: 10.1515/fascmath-2015-0014 |
[33] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Elliptic, 14 (1990), 77–84. http://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[34] | S. Kanas, R. Raducanu, Some classes of analytic functions related to conic domains, Slovaca, 64 (2014), 1183–1196. http://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[35] | S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. http://doi.org/10.2307/2039801 doi: 10.2307/2039801 |
[36] | S. A. Shah, K. I. Noor, Study on $q$-analogue of certain family of linear operators, Turk. J. Math., 43 (2019), 109–115. http://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41 |
[37] | H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integr. Transf. Spec. Funct., 18 (2007), 207–216. http://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577 |
[38] | K. I. Noor, S. Riaz, M. A. Noor, On $q-$Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[39] | S. A. Shah, L.-I. Cotîrlǎ, A. Catas, C. Dubau, G. Cheregi, A study of spiral-like harmonic functions associated with quantum calculus, J. Funct. Spaces, 22 (2017), 5495011. http://doi.org/10.1155/2022/5495011 doi: 10.1155/2022/5495011 |
[40] | L.-I. Cotîrlǎ, G. Murugusundaramoorthy, Starlike functions based on Ruscheweyh q-differential operator defined in Janowski domain, Fractal Fract., 7 (2023), 148. http://doi.org/10.3390/fractalfract7020148 doi: 10.3390/fractalfract7020148 |
[41] | S. M. El-Deeb, L.-I. Cotîrlǎ, Basic properties for certain subclasses of meromorphic p-valent functions with connected q-analogue of linear differential operator, Axioms, 12 (2023), 207. http://doi.org/10.3390/axioms12020207 doi: 10.3390/axioms12020207 |