Let $ H $ be a connected graph. The edge revised Szeged index of $ H $ is defined as $ Sz^{\ast}_{e}(H) = \sum\limits_{e = uv\in E_H}(m_{u}(e|H)+\frac{m_{0}(e|H)}{2})(m_{v}(e|H)+\frac{m_{0}(e|H)}{2}) $, where $ m_{u}(e|H) $ (resp., $ m_{v}(e|H) $) is the number of edges whose distance to vertex $ u $ (resp., $ v $) is smaller than to vertex $ v $ (resp., $ u $), and $ m_{0}(e|H) $ is the number of edges equidistant from $ u $ and $ v $. In this paper, the extremal unicyclic graphs with given diameter and minimum edge revised Szeged index are characterized.
Citation: Shengjie He, Qiaozhi Geng, Rong-Xia Hao. The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index[J]. AIMS Mathematics, 2023, 8(11): 26301-26327. doi: 10.3934/math.20231342
Let $ H $ be a connected graph. The edge revised Szeged index of $ H $ is defined as $ Sz^{\ast}_{e}(H) = \sum\limits_{e = uv\in E_H}(m_{u}(e|H)+\frac{m_{0}(e|H)}{2})(m_{v}(e|H)+\frac{m_{0}(e|H)}{2}) $, where $ m_{u}(e|H) $ (resp., $ m_{v}(e|H) $) is the number of edges whose distance to vertex $ u $ (resp., $ v $) is smaller than to vertex $ v $ (resp., $ u $), and $ m_{0}(e|H) $ is the number of edges equidistant from $ u $ and $ v $. In this paper, the extremal unicyclic graphs with given diameter and minimum edge revised Szeged index are characterized.
[1] | A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008. http://dx.doi.org/10.1007/978-1-84628-970-5 |
[2] | X. Cai, B. Zhou, Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem., 63 (2010), 133–144. |
[3] | P. Dankelmanna, I. Gutman, S. Mukwembi, H. C. Swart, The edge-Wiener index of a graph, Discrete Math., 309 (2009), 3452–3457. http://dx.doi.org/10.1016/j.disc.2008.09.040 doi: 10.1016/j.disc.2008.09.040 |
[4] | H. Dong, B. Zhou, C. Trinajstić, A novel version of the edge-Szeged index, Croat. Chem. Acta., 84 (2011), 543–545. http://dx.doi.org/10.5562/cca1889 doi: 10.5562/cca1889 |
[5] | I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta., 81 (2008), 263–266. |
[6] | S. He, R. X. Hao, Y. Q. Feng, On the edge-Szeged index of unicyclic graphs with perfect matchings, Discrete Appl. Math., 284 (2020), 207–223. http://dx.doi.org/10.1016/j.dam.2020.03.033 doi: 10.1016/j.dam.2020.03.033 |
[7] | S. He, R. X. Hao, A. Yu, On extremal cacti with respect to the edge Szeged index and edge-vertex Szeged index, Filomat, 32 (2018), 4069–4078. http://dx.doi.org/10.2298/FIL1811069H doi: 10.2298/FIL1811069H |
[8] | P. Khadikar, P. Kale, N. Deshpande, S. Karmarkar, V. Agrawal, Szeged indices of hexagonal chains, MATCH Commun. Math. Comput. Chem., 43 (2001), 7–15. |
[9] | J. Li, A relation between the edge Szeged index and the ordinary Szeged index, MATCH Commun. Math. Comput. Chem., 70 (2013), 621–625. |
[10] | X. Li, Y. Shi, I. Gutman, Graph energy, New York: Springer, 2012. http://dx.doi.org/10.1007/978-1-4614-4220-2 |
[11] | X. Li, Y. Shi, L. Wang, On a relation between Randić index and algebraic connectivity, MATCH Commun. Math. Comput. Chem., 68 (2011), 843–849. |
[12] | H. Liu, X. Pan, On the Wiener index of trees with fixed diameter, MATCH Commun. Math. Comput. Chem., 60 (2008), 85–94. |
[13] | M. Liu, S. Wang, Cactus graphs with minimum edge revised Szeged index, Discrete Appl. Math., 247 (2018), 90–96. http://dx.doi.org/10.1016/j.dam.2018.03.037 doi: 10.1016/j.dam.2018.03.037 |
[14] | Y. Liu, A. Yu, M. Lu, R. X. Hao, On the Szeged index of unicyclic graphs with given diameter, Discrete Appl. Math., 233 (2017), 118–130. http://dx.doi.org/10.1016/j.dam.2017.08.009 doi: 10.1016/j.dam.2017.08.009 |
[15] | M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat., 47 (2012), 21–29. http://dx.doi.org/10.3336/gm.47.1.02 doi: 10.3336/gm.47.1.02 |
[16] | M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov., 49 (2002), 483–496. |
[17] | C. Ren, J. Shi, On the Wiener index of unicyclic graphs with fixed diameter, Journal of East China University of Science and Technology, 39 (2013), 768–772. |
[18] | S. Tan, The minimum Wiener index of unicyclic graphs with a fixed diameter, J. Appl. Math. Comput., 56 (2018), 93–114. http://dx.doi.org/10.1007/s12190-016-1063-2 doi: 10.1007/s12190-016-1063-2 |
[19] | G. Wang, S. Li, D. Qi, H. Zhang, On the edge-Szeged index of unicyclic graphs with given diameter, Appl. Math. Comput., 336 (2018), 94–106. http://dx.doi.org/10.1016/j.amc.2018.04.077 doi: 10.1016/j.amc.2018.04.077 |
[20] | M. Wang, M. Liu, The lower bound of edge revised Szeged index of unicyclic graphs with given diameter, Advances in Mathematics (China), 52 (2023), 25–45. http://dx.doi.org/10.11845/sxjz.2021043b doi: 10.11845/sxjz.2021043b |
[21] | H. Wiener, Structral determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. http://dx.doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[22] | A. Yu, K. Peng, R. X. Hao, J. Fu, Y. Wang, On the revised Szeged index of unicyclic graphs with given diameter, Bull. Malays. Math. Sci. Soc., 43 (2020), 651–672. http://dx.doi.org/10.1007/s40840-018-00706-4 doi: 10.1007/s40840-018-00706-4 |