In this paper, we propose a stochastic SIHR epidemic model of COVID-19. A basic reproduction number $ R_{0}^{s} $ is defined to determine the extinction or persistence of the disease. If $ R_{0}^{s} < 1 $, the disease will be extinct. If $ R_{0}^{s} > 1 $, the disease will be strongly stochastically permanent. Based on realistic parameters of COVID-19, we numerically analyze the effect of key parameters such as transmission rate, confirmation rate and noise intensity on the dynamics of disease transmission and obtain sensitivity indices of some parameters on $ R_{0}^{s} $ by sensitivity analysis. It is found that: 1) The threshold level of deterministic model is overestimated in case of neglecting the effect of environmental noise; 2) The decrease of transmission rate and the increase of confirmed rate are beneficial to control the spread of COVID-19. Moreover, our sensitivity analysis indicates that the parameters $ \beta $, $ \sigma $ and $ \delta $ have significantly effects on $ R_0^s $.
Citation: Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang. Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
In this paper, we propose a stochastic SIHR epidemic model of COVID-19. A basic reproduction number $ R_{0}^{s} $ is defined to determine the extinction or persistence of the disease. If $ R_{0}^{s} < 1 $, the disease will be extinct. If $ R_{0}^{s} > 1 $, the disease will be strongly stochastically permanent. Based on realistic parameters of COVID-19, we numerically analyze the effect of key parameters such as transmission rate, confirmation rate and noise intensity on the dynamics of disease transmission and obtain sensitivity indices of some parameters on $ R_{0}^{s} $ by sensitivity analysis. It is found that: 1) The threshold level of deterministic model is overestimated in case of neglecting the effect of environmental noise; 2) The decrease of transmission rate and the increase of confirmed rate are beneficial to control the spread of COVID-19. Moreover, our sensitivity analysis indicates that the parameters $ \beta $, $ \sigma $ and $ \delta $ have significantly effects on $ R_0^s $.
[1] | World Health Organization. Available from: https://covid19.who.int. |
[2] |
A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Solitons Fractals, 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286
![]() |
[3] |
S. Allegretti, I. Bulai, R. Marino, M. Menandro, K. Parisi, Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model, Math. Model. Num. Sim. Appl., 2 (2021), 56–66. https://doi.org/10.53391/mmnsa.2021.01.006 doi: 10.53391/mmnsa.2021.01.006
![]() |
[4] |
P. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus., 135 (2020), 795. https://doi.org/10.1140/epjp/s13360-020-00819-5 doi: 10.1140/epjp/s13360-020-00819-5
![]() |
[5] |
D. Okuonghae, A. Omame, Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria, Chaos Solitons Fractals, 139 (2020), 110032. https://doi.org/10.1016/j.chaos.2020.110032 doi: 10.1016/j.chaos.2020.110032
![]() |
[6] |
F. $\ddot{O}$zk$\ddot{o}se$, M. Yavuz, Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey, Comput. Bio. Med., 141 (2021), 105044. https://doi.org/10.1016/j.compbiomed.2021.105044 doi: 10.1016/j.compbiomed.2021.105044
![]() |
[7] |
J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
![]() |
[8] |
L. Humphrey, E. Thommes, R. Fields, L. Coudeville, N. Hakim, A. Chit, et al., Large-scale frequent testing and tracing to supplement control of COVID-19 and vaccination rollout constrained by supply, Infect. Dis. Modell., 6 (2021) 955–974. https://doi.org/10.1016/j.idm.2021.06.008 doi: 10.1016/j.idm.2021.06.008
![]() |
[9] |
J. Asamoah, Z. Jin, G. Sun, B. Seidu, E. Yankson, A. Abidemi, et al., Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions, Chaos Solitons Fractals, 146 (2021), 110885. https://doi.org/10.1016/j.chaos.2021.110885 doi: 10.1016/j.chaos.2021.110885
![]() |
[10] |
X. Duan, X. Li, M. Martcheva, S. Yuan, Using an age-structured COVID-19 epidemic model and data to model virulence evolution in Wuhan, China, J. Biol. Dynam., 16 (2022), 14–28. https://doi.org/10.1080/17513758.2021.2020916 doi: 10.1080/17513758.2021.2020916
![]() |
[11] |
S. Jiao, M. Huang, An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate, AIMS Math., 5 (2020), 6714–6725. https://doi.org/10.3934/math.2020431 doi: 10.3934/math.2020431
![]() |
[12] |
J. Zhang, Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., 185 (2003), 15–32. https://doi.org/10.1016/S0025-5564(03)00087-7 doi: 10.1016/S0025-5564(03)00087-7
![]() |
[13] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Physica A, 476 (2017), 58–69. https://doi.org/10.1016/j.physa.2017.02.028 doi: 10.1016/j.physa.2017.02.028
![]() |
[14] |
S. Jamshidi, M. Baniasad, D. Niyogi, Global to USA county scale analysis of weather, urban density, mobility, homestay, and mask use on COVID-19, Int. J. Environ. Res. Public Health, 17 (2020), 7847. https://doi.org/10.3390/ijerph17217847 doi: 10.3390/ijerph17217847
![]() |
[15] |
M. S. Hossain, S. Ahmed, M. J. Uddin, Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model, Sci. Total Environ., 761 (2021), 143315. https://doi.org/10.1016/j.scitotenv.2020.143315 doi: 10.1016/j.scitotenv.2020.143315
![]() |
[16] |
M. Habeebullah, H. A. Abd El-Rahim, A. Morsy, Impact of outdoor and indoor meteorological conditions on the COVID-19 transmission in the western region of Saudi Arabia, J. Environ. Manage., 288 (2021), 112392. https://doi.org/10.1016/j.jenvman.2021.112392 doi: 10.1016/j.jenvman.2021.112392
![]() |
[17] |
M. Baniasad, G. Mofrad, B. Bahmanabadi, S. Jamshidi, COVID-19 in Asia: Transmission factors, re-opening policies, and vaccination simulation, Environ. Res., 202 (2021), 111657. https://doi.org/10.1016/j.envres.2021.111657 doi: 10.1016/j.envres.2021.111657
![]() |
[18] | O. Damette, S. Goutte, Weather, pollution and COVID-19 spread: A time series and wavelet reassessment, HAL, 2020. Available from: https://halshs.archives-ouvertes.fr/halshs-02629139. |
[19] | M. Keeling, P. Rohani, Modeling infectious diseases in human and animals, Princeton University Press, New Jersey, 2008. https://doi.org/10.2307/j.ctvcm4gk0 |
[20] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2014), 876–902. https://doi.org/10.2307/23073365 doi: 10.2307/23073365
![]() |
[21] |
D. Li, J. Cui, M. Liu, S. Liu, The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol., 77 (2015), 1705–1743. https://doi.org/10.1007/s11538-015-0101-9 doi: 10.1007/s11538-015-0101-9
![]() |
[22] |
Y. Cai, J. Li, Y. Kang, K. Wang, W. Wang, The fluctuation impact of human mobility on the influenza transmission, J. Franklin Inst., 357 (2020), 8899–8924. https://doi.org/10.1016/j.jfranklin.2020.07.002 doi: 10.1016/j.jfranklin.2020.07.002
![]() |
[23] |
J. Asamoah, M. Owusu, Z. Jin, F. Oduro, A. Abidemi, E. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos Solitions Fractals, 140 (2020), 110103. https://doi.org/10.1016/j.chaos.2020.110103 doi: 10.1016/j.chaos.2020.110103
![]() |
[24] |
C. Manski, F. Molinari, Estimating the COVID-19 infection rate: anatomy of an inference problem, J. Econom., 220 (2020), 181–192. https://doi.org/10.1016/j.jeconom.2020.04.041 doi: 10.1016/j.jeconom.2020.04.041
![]() |
[25] |
Z. Cao, W. Feng, X. Wen, L. Zu, M. Cheng, Dynamics of a stochastic SIQR epidemic model with standard incidence, Physica A, 527 (2019), 121180. https://doi.org/10.1016/j.physa.2019.121180 doi: 10.1016/j.physa.2019.121180
![]() |
[26] |
D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of COVID-19 pandemic: Disease extinction criteria in deterministic and stochastic models, Chaos Solitions Fractals, 27 (2021), 104472. https://doi.org/10.1016/j.chaos.2020.110381 doi: 10.1016/j.chaos.2020.110381
![]() |
[27] |
M. Fatini, M. Khalifi, R. Gerlach, A. Laaribi, R. Taki, Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence, Physica A, 534 (2019), 120696. https://doi.org/10.1016/j.physa.2019.03.061 doi: 10.1016/j.physa.2019.03.061
![]() |
[28] |
C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
![]() |
[29] |
Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100
![]() |
[30] |
Q. Liu, D. Jiang, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin Inst., 356 (2019), 2960–2993. https://doi.org/10.1016/j.jfranklin.2019.01.038 doi: 10.1016/j.jfranklin.2019.01.038
![]() |
[31] |
Q. Liu, Stability of SIRS system with random perturbations, Physica A, 388 (2009), 3677–3686. https://doi.org/10.1016/j.physa.2009.05.036 doi: 10.1016/j.physa.2009.05.036
![]() |
[32] |
G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
![]() |
[33] |
T. Tuong, H. Dang, N. Dieu, K. Tran, Extinction and permanence in a stochastic SIRS model in regime-switching with general incidence rate, Nonlinear Anal. Hybri., 34 (2019), 121–130. https://doi.org/10.1016/j.nahs.2019.05.008 doi: 10.1016/j.nahs.2019.05.008
![]() |
[34] |
M. Benaïm, C. Lobry, Lotka-volterra with randomly fluctuating environments or how switching between beneficial environments can make survival harder, Ann. Appl. Probab., 26 (2016), 3754–3785. https://doi.org/10.1214/16-AAP1192 doi: 10.1214/16-AAP1192
![]() |
[35] | M. Benaïm, Stochastic persistence, arXiv: 1806.08450. |
[36] |
A. Hening, H. D. Nguyen, Coexistence and extinction for stochastic kolmogorov systems, Ann. Appl. Probab., 28 (2018), 1893–1942. https://doi.org/10.1214/17-AAP1347 doi: 10.1214/17-AAP1347
![]() |
[37] | X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 2007. |
[38] |
N. Dang, G. Yin, Stability of regime-switching diffusion systems with discrete states belonging to a countable set, SIAM J. Control Optim., 56 (2018), 3893–3917. https://doi.org/10.1137/17M1118476 doi: 10.1137/17M1118476
![]() |
[39] | F. Klebaner, Introduction to Stochastic Calculus with Applications, Imperial College Press, 2005. |
[40] |
R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Medi., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
![]() |
[41] |
D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
![]() |
[42] |
A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scripta, 7 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc
![]() |
[43] |
A. Din, Y. Li, Stochastic optimal control for norovirus transmission dynamics by contaminated food and water, Chinese Phys. B, 2021. https://doi.org/10.1088/1674-1056/ac2f32 doi: 10.1088/1674-1056/ac2f32
![]() |
[44] |
A. Din, The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function, Chaos, 31 (2021), 104649. https://doi.org/10.1063/5.0063050 doi: 10.1063/5.0063050
![]() |
[45] |
A. Yang, B. Song, S. Yuan, Noise-induced transitions in a non-smooth SIS epidemic model with media alert, Math. Biosci. Eng., 18 (2021), 745–763. https://doi.org/10.3934/mbe.2021040 doi: 10.3934/mbe.2021040
![]() |
[46] |
J. Jaramillo, J. Ma, P. Driessche, S. Yuan, Host contact structure is important for the recurrence of Influenza A, J. Math. Biol., 77 (2018), 1563–1588. https://doi.org/10.1007/s00285-018-1263-5 doi: 10.1007/s00285-018-1263-5
![]() |
[47] |
Y. Zhao, L. Zhang, S. Yuan, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Physica A, 512 (2018), 248–260. https://doi.org/10.1016/j.physa.2018.08.113 doi: 10.1016/j.physa.2018.08.113
![]() |