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Abstract: In this paper, we propose a stochastic SIHR epidemic model of COVID-19. A basic
reproduction number Rs

0 is defined to determine the extinction or persistence of the disease. If Rs
0 < 1,

the disease will be extinct. If Rs
0 > 1, the disease will be strongly stochastically permanent. Based

on realistic parameters of COVID-19, we numerically analyze the effect of key parameters such as
transmission rate, confirmation rate and noise intensity on the dynamics of disease transmission and
obtain sensitivity indices of some parameters on Rs

0 by sensitivity analysis. It is found that: 1) The
threshold level of deterministic model is overestimated in case of neglecting the effect of environmental
noise; 2) The decrease of transmission rate and the increase of confirmed rate are beneficial to control
the spread of COVID-19. Moreover, our sensitivity analysis indicates that the parameters β, σ and δ
have significantly effects on Rs

0.

Keywords: stochastic SIHR epidemic model; COVID-19; the basic reproduction number; extinction;
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1. Introduction

The COVID-19 has been significantly impacting our lives since the emerge of the first case in early
December 2019 in Wuhan, China. As of 14 January 2022, there have been 318,648,834 confirmed
cases, including 5,518,343 deaths in the world [1]. Multiple mutant strains of COVID-19 have
emerged, such as Alpha, Beta, Gamma, Delta, Omicron and so on. Among these strains, Omicron, the
newly discovered strain, is known as the fast speed of transmission and the strong ability of infection.
Therefore it is extremely urgent to study and control the transmission of COVID-19.

To better understand the transmission and develop efficient control strategies, researchers have
employed mathematical models to analyze the dynamic behavior and control the outbreak of
COVID-19 [2–10]. Recently, Allegretti et al. [3] considered a modified SIR model of COVID-19 and
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found that a high fraction of avoided contacts leads to the stability of the disease free equilibrium.
Naik et al. [4] proposed a COVID-19 epidemic model and indicated that reducing transmission rate of
the coronavirus is the most essential strategy to prevent the virus further spread. Okuonghae et al. [5]
formulated a mathematical model and examined the impact of various non-pharmaceutical control
measures on the population dynamics of COVID-19 by using the available data from Lagos, Nigeria.
Fatma et al. [6] studied the interactions between COVID-19 and diabetes by using real data from
Turkey and numerically visualized the population dynamics of COVID-19. Tang et al. [7] proposed a
Filippov SIR model to investigate the impacts of three control strategies (media coverage, vaccination
and treatment) and choose the switching policy properly to reduce the infected size. Humphrey et
al. [8] developed an SEIRL model and found that testing and tracing asymptomatic individuals
frequently can help in controlling new cases. Jin et al. [9] proposed a generalised SEIR model to seek
optimal strategies for disease control, finding that reducing the transmission rates and increasing
contact tracing are possible to hinder the fast spread of COVID-19. It is found that in the early stages
of COVID-19, isolating confirmed cases was considered as a more effective control measure due to
the inability to quickly produce highly effective vaccines [11]. Hence, Jiao et al. [11] proposed an
SIHR model incorporating confirmed cases with general population-size dependent contact rate as
follows: 

dS
dt = A − β f (N)S I − µS ,
dI
dt = β f (N)S I − (γ + δ + µ + µ1)I,
dH
dt = δI − (m + µ + µ2)H,
dR
dt = γI + mH − µR.

(1)

Here the infectious cases are divided into two sub-populations: non-confirmed cases (I) and
confirmed cases (H). The non-confirmed cases are infected individuals who have not been tested by
medical institutions. Once the nucleic acid tests are positive, they would become confirmed cases and
be isolated. In model (1), I(t) and H(t) are the non-confirmed infected individuals and the confirmed
individuals at time t, respectively; and S (t), R(t) and N(t) denote respectively the susceptible
individuals, the recovered individuals and the total population. A is the recruitment rate of the
population and it is assumed that all the newcomers are susceptible. β f (N)S I is the general
population-size dependent incidence, in which the parameter β is the transmission rate from the
infectious class to the susceptible class, and f (N) is a function of N and it comes in many forms,
see [11–13]. µ and γ denote the natural death rate and the natural recovery rate, respectively. δ is the
confirmation rate from the infected population to confirmed cases. µ1, µ2 are respectively the extra
disease-related death rate constants in compartments I and H. m is the transform rate from the
confirmed population to the removed population. All parameters are nonnegative constants. Model
(1) always exists the disease-free equilibrium E0 = ( A

µ
, 0, 0, 0), whose stability is determined by the

basic reproduction number R0 =
Aβ f ( A

µ )

µ(δ+γ+µ+µ1) . If R0 < 1, then E0 is globally asymptotically stable; and if
R0 > 1, E0 becomes unstable and an endemic equilibrium E∗(S ∗, I∗,H∗,R∗) appears and it is locally
asymptotically stable, see [11] for details.

However, deterministic model (1) has certain limitation, it cannot describe the effects of random
environment. In fact, there are many stochastic factors that can effect the transmission of disease. For
example, Jamshidi et al. [14] investigated the impact of mobility, urban density, population, homestay,
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and mask-wearing separately on COVID-19 by conducting a multiple regression analysis and found
that a higher level of population mobility and traveling can increase the transmission rate. Sabbir
Hossain et al. [15] studied the impact of weather on COVID-19 in part of South Asian countries
through adopting the Autoregressive Integrated Moving Average with Explanatory Variables
(ARIMAX) model and revealed that maximum wind speed had a significant negative effect on the
transmission rate in India, whlie rainfall, relative humidity, temperature and maximum air pollutants
matter PM 2.5 had different influence on COVID-19 in different areas. We also refer the readers to
Habeebullah [16], Baniasad [17] and Damette [18] for learning more about the effect of weather,
pollution and mobility to the transmission efficiency of COVID-19. Therefore, the effects of these
random factors can be translated to the fluctuations in the transmission rate β [19]. It has been well
established in literatures that introducing parameter perturbations can affect the dynamic behavior of
population. Gray et al. [20] studied the effect of stochastic parameter perturbation on SIS model and
fill previous gap. Li et al. [21] applied similar parameter perturbation to investigate the effect of
stochastic environmental variability on inter-pandemic transmission dynamics of influenza A. Cai et
al. [22] showed that appropriate parameter perturbation to the system is useful in controlling the
spread of the disease. Motivated by these, in this paper we suppose that the transmission rate β

fluctuates around an average value due to the continuous fluctuations in the environment by the white
noise β + σḂ(t), and then obtain the following stochastic model:

dS = [A − β f (N)S I − µS ]dt − σ f (N)S IdB(t),
dI = [β f (N)S I − (γ + δ + µ + µ1)I]dt + σ f (N)S IdB(t),
dH = [δI − (m + µ + µ2)H]dt,

dR = (γI + mH − µR)dt,

(2)

where B(t) is a standard Brownian motion, which is defined on the complete probability space
(Ω,F , {Ft}t≥0,P), and σ represents the noise intensity; the function f (·) : R+ → R+ satisfies the
following assumptions:

f ′(x) ≤ 0, ( f (x)x)′ ≥ 0, (3)

where f ′(x) and ( f (x)x)′ respectively denote the derivative of f (x) and ( f (x)x).
The main purpose of this paper is to explore the effect of random variability in the environments

on the spread of COVID-19 based on realistic parameters from [11] and [23], and obtain the strict
threshold condition of the disease. The main contributions of our study can be summarized as follows.

• It has been shown in [24] that uncertainty is certain in the disease transmission rate of COVID-19
and there are large variation in its range. Therefore, it seems necessary and important to consider
random factors in the context of COVID-19.

• Under the setting of more general population-size dependent contact rate, we obtain the threshold
condition of disease extinction and persistence by constructing suitable Lyapunov functions. In
this sense, we extend the previous studies such as [25] and [26], where the standard incidence
form is used.

• We have proved that the basic reproduction Rs
0 for our stochastic model completely determines the

extinction or persistence of the disease. This is contrasted with the existing literatures [27–32],
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where except for the conditions required for the basic reproduction number, there still have some
additional conditions for noise to ensure the extinction or persistence of disease. Therefore our
results can be regard as an significant extension of the previous articles and also can provide
effective information to the control of COVID-19.

The organization of this paper is as follows. In Section 2, we prove the existence and uniqueness
of the positive solution. In Section 3, using techniques in [33–36] we derive the threshold Rs

0 which
completely determines the extinction and strongly permanent of the disease. Finally, in Section 4,
numerical simulations are carried out to illustrate our theoretical results by analyzing the effect of key
parameters on disease and obtain sensitivity indices of some parameters on Rs

0 by sensitivity analysis.
We also discuss the impact of some measures (media coverage, government intervention, testing and
tracking) on COVID-19 and give a summary.

2. Existence and uniqueness of the positive solution

In order to investigate the dynamics of stochastic model (2), we first need to show that the model
has a unique global positive solution. Denote by Φ(t) = (S (t), I(t),H(t),R(t)) the solution of model (2)
and R4

+ := {(x1, x2, x3, x4) ∈ R4 : xi > 0, i = 1, 2, 3, 4}. Moreover, for any function V ∈ C2(R4,∞);R+),
define the differential operator L associated with model (2) as

LV = VΦ(Φ) f̃ (Φ) +
1
2

g̃T (Φ)VΦΦ(Φ)g̃(Φ),

where VΦ(Φ) and VΦΦ(Φ) are the gradient and Hessian of V(·); f̃ and g̃ are respectively the drift and
diffusion coefficients of model (2). By Itô’s formula,

dV = LVdt + VΦ(Φ)g̃(Φ)dB(t).

We have the following theorem.

Theorem 2.1. For any initial value
(
S (0), I(0),H(0),R(0)

)
∈ R4

+, there is a unique solution(
S (t), I(t),H(t),R(t)

)
of model (2) on t ≥ 0, and the solution will remain in R4

+ with probability 1.

Proof. Notice that the coefficients of model (2) satisfy the local Lipschitz condition. Then there is a
unique local solution

(
S (t), I(t),H(t),R(t)

)
on [0, τe) for any initial value

(
S (0), I(0),H(0),R(0)

)
in R4

+,
where τe is the explosion time [37]. In order to show the global existence of the positive solution, we
need to prove that τe = ∞ almost surely (a.s.).

By summing all the equations in model (2) we get that

dN(t) = (A − µN − µ1I − µ2H)dt, (4)

where N(t) = S (t) + I(t) + H(t) + R(t). It then follows that for all t < τ0,

N(t) ≤ max
{
S (0) + I(0) + H(0) + R(0),

A
µ

}
:= C1, (5)

where
τ0 := inf{t ≥ 0 : S (t) ≤ 0 or I(t) ≤ 0 or H(t) ≤ 0 or R(t) ≤ 0}.
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Obviously, τ0 ≤ τe, a.s. To prove τe = ∞, we only need to prove τ0 = ∞, a.s. For this, we set ε0 > 0
such that S (0) > ε0. I(0) > ε0, H(0) > ε0, R(0) > ε0. For any ε > 0 satisfying ε ≤ ε0, define the
stopping time

τε = inf{t ∈ [0, τe) : S (t) ≤ ε or I(t) ≤ ε or H(t) ≤ ε or R(t) ≤ ε}, (6)

where we let inf ∅ = ∞ (as usual ∅ denotes the empty set). It is easy to see that τε increases to τ0 as ε
tends to 0, that is τ0 = limε→0 τε, a.s. Now we prove that τ0 = ∞, a.s.

Suppose that this statement is false, then there exist a pair of constants T > 0 and ρ ∈ (0, 1) such
that

P{τ0 ≤ T } > ρ.

Thus there is a positive constant ε1 ≤ ε0 such that P{τε ≤ T } > ρ for any positive ε ≤ ε1. Define a
function V : R4

+ → R+ by

V(Φ(t)) = − ln
S
C1
− ln

I
C1
− ln

H
C1
− ln

R
C1
.

Clearly, V is positive definite. Applying Itô’s formula in Appendix, we obtain

dV = LVdt + σ f (N)(I − S )dB(t),

where

LV = −
A
S

+ β f (N)I + µ +
1
2
σ2I2 f 2(N) − β f (N)S + (γ + δ + µ + µ1)

+
1
2
σ2S 2 f 2(N) −

δI
H

+ (m + µ + µ2) −
γI
R
−

mH
R

+ µ.

By using models (5) and (3), we can obtain

LV ≤β f (N)N +
1
2
σ2(I2 + S 2) f 2(N) + 4µ + γ + δ + µ1 + m + µ2

≤β f (C1)C1 +
1
2
σ2(C1 f (C1))2 + 4µ + γ + δ + µ1 + m + µ2 := C2.

Therefore
dV ≤ C2dt + σ f (N)(I − S )dB(t).

Integrating both sides from 0 to τε ∧ T and taking expectations, yields

EV(Φ(τε ∧ T )) ≤ V(Φ(0)) + C2T.

Set Ωε = {τε ≤ T } for any positive ε ≤ ε1, then we have P(Ωε) > ρ. Note that for every ω ∈ Ωε,
there is at least one of S (τε, ω), I(τε, ω), H(τε, ω) and R(τε, ω) equals ε, then

V(Φ(τε)) ≥ − ln
ε

C1
.

Consequently,

V(Φ(0)) + C2T ≥E[IΩε
V(Φ(τε ∧ T ))] = P(Ωε)V(Φ(τε)) > −ρ ln

ε

C1
,
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where IΩε
is the indicator function of Ωε. Letting ε→ 0, we obtain the contradiction

∞ > V(Φ(0)) + C2T = ∞.

So τ0 = ∞, a.s. The proof of Theorem 2.1 is thus completed.

Denote
∆ = {(S , I,H,R) ∈ R4

+ :
A

µ + µ1 + µ2
≤ S + I + H + R ≤

A
µ
}. (7)

It is easy to see from model (4) that ∆ is the positive invariant set of stochastic model (2). Thus, in
the sequel of this paper, we only need to consider the dynamics of model (2) constrained in ∆.

3. Threshold dynamics of the disease

In this section, we perform the persistence and extinction analysis of stochastic model (2). Define

Rs
0 =

Aβ f
(

A
µ

)
µ
(
δ + γ + µ + µ1 + 1

2 f 2
(

A
µ

)(
A
µ

)2
σ2

) . (8)

We can see from below that Rs
0 plays the similar role of basic reproduction number of disease as

defined in classical deterministic epidemic models, called stochastic basic reproduction number, which
completely determines the dynamics of stochastic model (2).

Denote
g(S , I,H,R) = −

1
2
σ2 f 2(N)S 2 + β f (N)S − (γ + δ + µ + µ1) (9)

and let
λ := g

(A
µ
, 0, 0, 0

)
= −

1
2
σ2 f 2

(A
µ

)(A
µ

)2
+ β f

(A
µ

)A
µ
− (γ + δ + µ + µ1). (10)

It is easy to check that Rs
0 = 1 implies λ = 0, and moreover Rs

0 < 1 if and only if λ < 0.

3.1. Extinction

Consider the following stochastic differential equation of x(t) ∈ Rn:

dx(t) = a(x(t))dt + b(x(t))dB̃(t), (11)

where a(·) : Rn → Rn and b(·) : Rn → Rn×d; B̃(t) is a Ft–adapted Rd–valued standard Brownian
motion. Assume that x(t) = 0 is the trivial solution of model (11). The following lemma presents
a proper adaptation of Theorem 3.1 in Dang and Yin [38], which will be used later to establish the
condition for the extinction of disease.

Lemma 3.1. Let D be a neighborhood of 0 ∈ Rn and V : D → R+ which satisfies that V(x) = 0 if and
only if x = 0 and that V(x) is continuous on D, twice continuously differentiable in D \ {0}. Then the
trivial solution is asymptotically stable in probability provided there exists a negative constant number
c such that for any x ∈ D\{0},

LV(x) ≤ cV(x).
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The following result is about the extinction of disease.

Theorem 3.2. If Rs
0 < 1, then for any initial value

(
S (0), I(0),H(0),R(0)

)
∈ ∆, Φ(t) → ( A

µ
, 0, 0, 0) a.s.

as t → ∞, i.e., the disease will go to extinction. Moreover,

P
{

lim
t→∞

ln I(t)
t

= λ < 0
}

= 1. (12)

Proof. Notice that Rs
0 < 1 implies that λ < 0. Thus we can choose a sufficiently small number ξ > 0

such that λ + ξ < 0. Consider the Lyapunov function

V(S , I,H,R) =
(A
µ
− S

)2
+ I p + H2 + qR2, (13)

where q =
µ2

2m2 and p ∈ (0, 1) will be determined later. Obviously, V(S , I,H,R) = 0 if and only if
(S , I,H,R) = ( A

µ
, 0, 0, 0). Applying Itô’s formula, it then follows from model (13) that

LV(S , I,H,R)

= − 2
(A
µ
− S

)
(A − β f (N)S I − µS ) + pI p−1[β f (N)S I − (γ + δ + µ + µ1)I]

+ σ2 f 2(N)S 2I2 +
1
2

p(p − 1)I pσ2 f 2(N)S 2 + 2H[δI − (m + µ + µ2)H]

+ 2qR(γI + mH − µR)

= − 2µ
(A
µ
− S

)2
− 2(m + µ + µ2)H2 − 2qµR2 + I

[
2
(A
µ
− S

)
β f (N)S

+ σ2 f 2(N)S 2I + 2δH + 2qγR
]

+ pI pg(S , I,H,R) + 2qmHR

+
1
2

p2σ2 f 2(N)S 2I p.

(14)

We first perform some estimates on the items appeared in model (14). Notice that

− 2µ
(A
µ
− S

)2
− (2m + 2µ2 + µ)H2 − qµR2 ≤ p(λ + ξ)

[(A
µ
− S

)2
+ H2 + qR2

]
, (15)

provided p is sufficiently small such that

min{2µ, 2m + 2µ2 + µ, qµ} ≥ p|λ + ξ|. (16)

Now denote Uδ1 := ( A
µ
− δ1,

A
µ
] × [0, δ1)3 for δ1 ∈ (0, A

µ
). Notice the continuity of functions g(·) and

f (·). We can take δ1 and p sufficiently small such that model (16) holds and for any (S , I,H,R) ∈ Uδ1 ,
the following two inequalities hold:

pI pg(S , I,H,R) ≤ p
[
g(

A
µ
, 0, 0, 0) + ξ1

]
I p = p(λ + ξ1)I p

and
I
[
2
(A
µ
− S

)
β f (N)S + σ2 f 2(N)S 2I + 2δH + 2qγR

]
+

1
2

p2σ2 f 2(N)S 2I p ≤ pξ2I p,
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where 0 < ξ1, ξ2 < ξ and ξ1 + ξ2 = ξ. Consequently, we have

pI pg(S , I,H,R) + I
[
2
(A
µ
− S

)
β f (N)S + σ2 f 2(N)S 2I + 2δH + 2qγR

]
+

1
2

p2σ2 f 2(N)S 2I p ≤ p(λ + ξ)I p.

(17)

Moreover, we can easily check that

− qµR2 + 2qmHR − µH2 ≤ 0. (18)

Combining models (15), (17) and (18), we know that if we take p and δ1 both sufficiently small, it
then follows from model (14) that for any (S , I,H,R) ∈ Uδ1 , we have

LV(S , I,H,R) ≤ p(λ + ξ)V(S , I,H,R).

According to Lemma 3.1, we know that the disease free equilibrium ( A
µ
, 0, 0, 0) is asymptotically

stable in probability. That is, for any ε > 0, there exists a δ2, 0 < δ2 < δ1 such that

P

{
lim
t→∞

Φ(t) = (
A
µ
, 0, 0, 0)

}
≥ 1 − ε (19)

for any (S (0), I(0),H(0),R(0)) ∈ Uδ2 , where Uδ2 = ( A
µ
− δ2,

A
µ
] × [0, δ2)3. Now we are in a position to

prove that any solution starting in ∆ will eventually enter Uδ2 .
Define τδ2 = inf{t ≥ 0 : S (t) ≥ A

µ
− δ2}. Consider the Lyapunov function V1(Φ(t)) = c1 − (S + 1)c2 ,

where c1 and c2 are two positive constants to be specified. By calculating we obtain

LV1(Φ(t)) = −c2(S + 1)c2−2
[
(S + 1)

(
µ
(A
µ
− S

)
− β f (N)S I

)
+

c2 − 1
2

σ2 f 2(N)S 2I2
]
.

For any S ∈ (0, A
µ
− δ2], we have (S + 1)µ( A

µ
− S ) ≥ µδ2 and inf{σ2 f 2(N)} > 0, then we can choose

a sufficiently large c2 such that

(S + 1)
[
µ(

A
µ
− S ) − β f (N)S I

]
+

c2 − 1
2

σ2 f 2(N)S 2I2 ≥
1
2
µδ2.

Hence
LV1(Φ(t)) ≤ −

1
2
µδ2.

By Dynkin’s formula [39], we obtain

E[V1(Φ(τδ2 ∧ t))] = V1(Φ(0)) + E

∫ τδ2∧t

0
LV1(Φ)ds ≤ V1(Φ(0)) −

1
2
µδ2E(τδ2 ∧ t).

Letting t → ∞ and using Fatou’s lemma yields that

E[V1(Φ(τδ2))] ≤ V1(Φ(0)) −
1
2
µδ2E(τδ2).
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Due to V1 is bounded on R4
+, then E(τδ2) < ∞. By the strong Markov property, from model (19) and

E(τδ2) < ∞ we have that

P

{
lim
t→∞

Φ(t) =
(A
µ
, 0, 0, 0

)}
≥ 1 − ε

for any ε > 0 and (S (0), I(0),H(0),R(0)) ∈ ∆. Therefore

P

{
lim
t→∞

Φ(t) = (
A
µ
, 0, 0, 0)

}
= 1 (20)

for any (S (0), I(0),H(0),R(0)) ∈ ∆. Applying the Itô’s formula, we have

d ln I =
(
β f (N)S − (γ + δ + µ + µ1) −

1
2
σ2 f 2(N)S 2

)
dt + σ f (N)S dB(t). (21)

Integrating both sides of model (21) from 0 to t leads to

ln I(t) − ln I(0) =

∫ t

0
g(Φ(u))du +

∫ t

0
σ f (N)S dB(u). (22)

By the strong law of large numbers for martingales, we obtain from models (10) and (20) that

lim
t→∞

1
t

∫ t

0
g(Φ(u))du = λ

and

lim
t→∞

1
t

∫ t

0
σ f (N)S (u)dB(u) = 0, a.s.

It then follows from model (22) that limt→∞
ln I(t)

t = λ, which implies model (12). The proof is thus
completed.

3.2. Persistence

In this section, we prove that the disease will be persistent provided Rs
0 > 1. We first present the

following useful lemma.

Lemma 3.3. Let ∂∆ := {(S , I,H,R) ∈ ∆ : I = 0}. Then for any (S (0), I(0),H(0),R(0)) ∈ ∂∆, there
exists T > 0 such that

E

∫ T

0
g(S (t), I(t),H(t),R(t))dt ≥

3λ
4

T. (23)

Proof. If I(0) = 0, then I(t) = 0 for all t ≥ 0 and model (2) becomes
dS = (A − µS )dt,

dI = 0,
dH = −(m + µ + µ2)Hdt,

dR = (mH − µR)dt.

(24)
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Obviously, for any (S (0), I(0),H(0),R(0)) ∈ ∂∆, (S (t), I(t),H(t),R(t)) tends asymptotically to the
disease free equilibrium ( A

µ
, 0, 0, 0). Therefore,

lim
t→∞

1
t

∫ t

0
g(S (s), I(s),H(s),R(s))ds = g(

A
µ
, 0, 0, 0) = λ.

Then there exists a T > 0 such that model (23) holds.

The following theorem is about the persistence of the disease.

Theorem 3.4. If Rs
0 > 1, then for any initial value

(
S (0), I(0),H(0),R(0)

)
∈ ∆, the disease is strongly

stochastically permanent, namely, for any ε > 0, there exists a α > 0 such that

lim inf
t→∞

P{I(t) ≥ α} > 1 − ε. (25)

Proof. Notice that Rs
0 > 1 implies that λ > 0. Consider the Lyapunov function Vθ = Iθ, where θ ∈ R is

a constant. Applying the Itô’s formula, we have

LVθ = θ
[
β f (N)S − (γ + δ + µ + µ1) +

θ − 1
2

σ2 f 2(N)S 2
]
Iθ. (26)

Denoting Qθ = sup(S ,I,H,R)∈∆{θ[β f (N)S − (γ + δ + µ + µ1) + θ−1
2 σ

2 f 2(N)S 2]} , then we have from
model (26) that LVθ ≤ QθIθ for any initial value

(
S (0), I(0),H(0),R(0)

)
∈ ∆. By integrating both sides

of model (26) from 0 to t and taking expectation yields

E(Iθ(t)) = E(Iθ(0)) + E

∫ t

0
LVθds ≤ E(Iθ(0)) +

∫ t

0
QθE(Iθ(s))ds.

Using Gronwall inequality, for any t ≥ 0 and
(
S (0), I(0),H(0),R(0)

)
∈ ∆, we have

E(Iθ(t)) ≤ Iθ(0) exp(Qθt). (27)

Similarly, we have for t ≥ nT ,

E(Iθ(t)) ≤ E(Iθ(nT )) exp[Qθ(t − nT )]. (28)

Denote ln I(0) − ln I(t) = W(t). It then follows from model (22) that

W(t) = −

∫ t

0
g(Φ(u))du −

∫ t

0
σ f (N)S (u)dB(u). (29)

By Feller property and Lemma 3.3, it then follows from model (29) that there exists a sufficiently
small δ3 > 0 such that for any

(
S (0), I(0),H(0),R(0)

)
∈ ∆ with I(0) < δ3, we have

E(W(T )) = −E

∫ T

0
g(Φ(t))dt ≤ −

λ

2
T. (30)

Notice also from model (27) that for any fixed t ≥ 0,

E(eW(t) + e−W(t)) = E
( I(0)

I(t)
+

I(t)
I(0)

)
≤ E(eQ−1t + eQ1t) < ∞. (31)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4217–4236.



4227

Using Lemma A.1 in Appendix, we obtain

lnE(eθW(T )) ≤ E(θW(T )) + Q̂1θ
2, θ ∈ [0, 0.5],

where Q̂1 is a constant which depends on T , Q−1 and Q1. For a sufficiently small θ satisfying Q̂1θ
2 ≤

λθ
4 T , by model (30), we have

E
( Iθ(0)
Iθ(T )

)
= E(eθW(T )) ≤ exp

(
−
λθ

2
T + Q̂1θ

2
)
≤ exp

(
−
λθ

4
T
)
.

Then
E(I−θ(T )) ≤ I−θ(0) exp

(
−
λθ

4
T
)

= qI−θ(0) (32)

for I(0) < δ3, where q = exp(−λθ4 T ).
Next, by model (27), we obtain that

E(I−θ(T )) ≤ δ−θ3 exp(Q−θT ) := C (33)

for any I(0) > δ3. Then model (33) together with model (32) implies that

E(I−θ(T )) ≤ qI−θ(0) + C

for any
(
S (0), I(0),H(0),R(0)

)
∈ ∆. By the Markov property, we have

E[I−θ((k + 1)T )] ≤ qE(I−θ(kT )) + C.

Using this recursively, we obtain

E[I−θ((k + 2)T )] ≤ q2E(I−θ(kT )) + qC + C

and
E(I−θ(nT )) ≤ qnI−θ(0) +

C(1 − qn)
1 − q

.

This together with model (28) leads to

E(I−θ(t)) ≤
(
qnI−θ(0) +

C(1 − qn)
1 − q

)
exp(Q−θT ), t ∈ [nT, (n + 1)T ].

Letting n→ ∞, we obtain

lim sup
t→∞

E(I−θ(t)) ≤
C

1 − q
exp(Q−θT ) := Z.

For any ε > 0, let α = ε
1
θ

Z
1
θ
. By Chebyshev’s inequality we obtain

P{|I(t)| < α} = P

{
1
|I(t)|θ

>
1
αθ

}
≤ αθE(|I−θ(t)|).

That is,
lim sup

t→∞
P{|I(t)| < α} ≤ αθZ = ε.

Therefore
lim inf

t→∞
P{I(t) ≥ α} > 1 − ε.

The proof is thus completed.
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Table 1. Parameter values used in the simulation.

Parameters Description Values Sources
A The recruitment rate 1319.2940 [23]
µ The natural death rate 0.000042578 [23]
γ The natural recovery rate 0.0185 [11]
m The recovery rate of confirmed individuals 0.0667 [11]
δ The confirmed rate 0.1836 [11]
µ1 The disease-induced death rate of infected individuals 0.0044 [23]
µ2 The disease-induced death rate of confirmed cases 0.0044 [23]
Rs

0 The basic reproduction number of COVID-19 1.9900 [23]

Remark 1. In this section, we obtain the threshold condition Rs
0 which completely determines the

extinction and persistence of disease. By contrast, in [40], besides the conditions required on basic
reproduction number R0, there is one additional condition µ > σ2

1∨σ
2
2∨σ

2
3∨σ

2
4

2 to make the disease extinct
or persistent. Thus, our results can be regard as an significant extension of COVID-19 and could
provide government effective information to the control of of disease transmission.

4. Numerical results

In this section, model (2) with the incidence function f (N) = 1
1+bN+

√
1+2bN

[12] is applied to
verify/extend our analytical results based on the realistic parameter values of COVID-19 from
Asamoah [23] and Jiao [11]. We fix the initial values

(
S (0), I(0),H(0),R(0)

)
= (50000, 5, 2, 1) except

for other specification. We divide our simulations into the following two subsections.

4.1. The effect of β, σ and δ on the dynamics of model (2)

In the subsection, we numerically simulate the solution of model (2) using MATLAB R2016b to
illustrate the theoretical results obtained in Section 3, mainly revealing the effect of σ, β and δ on the
dynamics of model (2). The numerical scheme is obtained through Milstein’s higher order method [41].

Case 1. The effect of noise intensity
We first suppose β = 0.1860 and b = 0.3900 and other parameter values are shown in Table 1. In this

case one can get that R0 = 2.3081. It then follows from [11] that deterministic model (1) has a unique
endemic equilibrium E∗(12824304.8094, 3743.8322, 9661.8313, 16762296.1178), which is stable. It
follows from Rs

0 = 1.9900 that we have σ = 0.1000. By Theorem 3.4, we can get that the disease is
strongly stochastically permanent. The computer simulations shown in Figure 1(a) clearly support the
result. To show how the noise affects the dynamics of disease, now we take σ = 0.0100, and other
parameters remain unchanged. In this case, we obtain Rs

0 = 2.3045 > 1. The similar simulation result
is shown in Figure 1(b). We observed that the path of I(t) for model (2) is oscillating around the steady
state value I∗ = 3743.8322. Compared with Figure 1(a), one can get that when Rs

0 > 1, the small noise
does not change the stability of the equilibrium state of model (2), but with the intensity of white noise
increasing, the volatility of I(t) is getting larger. Finally, we consider σ = 0.3000. It is easy to compute
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that Rs
0 = 0.9494 < 1, according to Theorem 3.2, the disease will go extinct almost surely as shown in

Figure 1(c). However, deterministic model (1) claims the persistence of the disease. This discrepancy
highlights the impact of stochastic environmental to the disease dynamics.
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(a): σ = 0.1000 (b): σ = 0.0100 (c): σ = 0.3000

Figure 1. The evolution of a single path of I(t) of models (1) and (2) is graphed for different
values of σ (0.1000, 0.0100, 0.3000). Here we take β = 0.1860, b = 0.3900 and other
parameter values are tabulated in Table 1 (Color figure online).

Case 2. The effect of transmission rate
Here we assume b = 0.3900, σ = 0.1000, and other parameters take values as in Table 1. In this

case we consider three different values of β = 0.0500, 0.1860, 0.3500 to see the effect of transmission
rate on the spread of infectious disease. The corresponding values of Rs

0 are respectively 0.5353,
1.9900 and 3.7473. By Theorems 3.2 and 3.4, we can get that the disease is strongly stochastically
permanent when β = 0.1860 and β = 0.3500, while the disease is extinctive when β = 0.0500. The
computer simulations are shown in Figure 2(a) which clearly support these results. Figure 2(b) shows
the corresponding persistence level of I(t) for various values of β. It is observed that when Rs

0 > 1,
the persistence level of I(t) is reduced gradually with the decrease of transmission rate. This indicates
that decreasing transmission rate is beneficial to the control of the spread of COVID-19. So we can
take some measures to reduce the scale of outbreaks by decreasing transmission rate. For example,
transmission rate can be reduced through improving the media response rate to reports on the severity
of COVID-19 and encouraging citizens to actively prevent disease. Moreover, government can adopt a
series of policies including wearing masks, avoiding farm and wild animals, travel restrictions, stay at
home, lockdowns, and so on to decline transmission rate. These measures could effectively reduce the
number of infected cases and suppress the outbreak of disease.

Case 3. The effect of confirmed rate
Here we assume β = 0.1860, b = 0.3900, σ = 0.1000, and other parameters taking values as in

Table 1. In this case we choose three different values of δ − 0.1000, 0.1836, 0.6000 to see the effect of
confirmed rate on the spread of infectious diseases. The corresponding values of Rs

0 are respectively
3.0601, 1.9900, 0.7270. According to Theorems 3.2 and 3.4, the disease persists when δ = 0.1000 and
δ = 0.1836, while the disease will be extinct when δ = 0.6000. Figure 3(a) clearly support these results.
Figure 3(b) shows that the corresponding persistence level of I(t) for various values of δ. We can see
that when Rs

0 > 1, the persistence level of I(t) is reduced gradually with the increase of confirmed rate.
This indicates that the increase of confirmed rate is beneficial to control the spread of COVID-19, while
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blind testing is not desirable, it will cause a huge burden on society. Therefore, in order to enhance
confirmation rate, a positive tracking and testing strategy should be carried out to control the spread
of disease [8]. Frequently testing in smaller scale populations, such as schools, factories, community,
etc., where virus is more easier to spread, and test less frequently parts of the population who are not
as exposed. Detecting continually close contacts also leads to the increase of confirmed cases.
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Figure 2. (a) The evolution of a single path of I(t) of stochastic model (2) is graphed for
different values of β (0.3500, 0.1860, 0.0500). (b) The corresponding persistence level of
infected individuals of model (2) is graphed for various values of β. Here we takeσ = 0.1000,
b = 0.3900 and other parameter values are shown in Table 1 (Color figure online).
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Figure 3. (a) The evolution of a single path of I(t) of stochastic model (2) is graphed for
different values of δ (0.1000, 0.1836, 0.6000). (b) The corresponding persistence level of
infected individuals of model (2) is graphed for various values of δ. Here we take β = 0.1860,
σ = 0.1000, b = 0.3900 and other parameter values are given in Table 1 (Color figure online).
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Table 2. Normalized sensitivity index for some parameters for Rs
0.

Parameters Description Sensitivity Index
A The recruitment rate +0.0001477
µ The natural death rate -0.0003257
γ The natural recovery rate -0.0773
β The transmission rate +1.0000
δ The confirmed rate -0.7675
σ The noise intensity -0.2746
µ1 The disease-induced death rate of infected individuals -0.0184

4.2. Sensitivity analysis

Varying parameter values will have different effects on the output of model (2). In order to
qualitatively analyze the influence of some parameters on the output of model (2), the sensitivity
analysis method is adopted. The normalized forward sensitivity index of a variable, R, that depends
on a parameter, h, is defined as:

ΥR
h =

∂R

∂h
×

∣∣∣∣ h
R

∣∣∣∣.
Using the above formula, we analyze the sensitivity of state variable Rs

0 to the following parameters
of model (2):

A = 1319.2940, β = 0.1860, δ = 0.1836, σ = 0.1000
µ = 0.000042578, µ1 = 0.0044, γ = 0.0185.

(34)
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Figure 4. The sensitivity indices of state variable Rs
0 with respect to some parameters for

model (2).

From Table 2, parameters with positive sensitivity index, A and β, indicate that the transmission of
COVID-19 increases with the increase of these two parameters. Similarly, parameters with negative
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sensitivity index, µ, γ, δ, σ and µ1, mean that the transmission of COVID-19 decreases with the increase
of these parameters. As shown in Figure 4, we observe that β, σ and δ have significant effects on Rs

0.
This verifies that our analysis of parameters is meaningful in Subsection 4.1.

5. Conclusions

In reality, there exist many random environmental factors, like weather, relative humidity,
temperature and population mobility, which may have significant effects on the transmission of
COVID-19. Therefore, considering stochastic influences into the epidemic model seems necessary
and important. In this paper, we propose and investigate a stochastic SIHR epidemic model with the
environmental variability in the transmission rate to describe the transmission of COVID-19, and
based on which we numerically illustrate the evolution dynamic of COVID-19 using the realistic
parameter values from literatures.

The main contribution of our paper can be summarized as the following two aspects.
Mathematically, we prove that the stochastic dynamics of stochastic model (2) is completely
determined by the reproduction number Rs

0: If Rs
0 < 1, the disease will go to extinction ultimately, and

if Rs
0 > 1, the disease stochastically permanent. Epidemiologically, we can conclude that: (i) The

presence of environmental noises can sustain the irregular recurrence of disease and the volatility of
infected population increases with the increasing noise intensity if Rs

0 > 1. When the noise increases
to a certain level such that Rs

0 < 1, the disease will go to extinction (See Figure 1). And also it can be
seen from Figure 1(c) that white noise may reshape the solution behavior of corresponding
deterministic model (1). In other words, noise may change the evolution tendency of disease. (ii) The
decrease of transmission rate and the increase of confirmed rate are beneficial to the control of
COVID-19 spread (See Figures 2 and 3). (iii) Our sensitivity analysis indicates that the transmission
rate β, noise intensity σ and confirmed rate δ are the most sensitive parameters to Rs

0 (See Figure 4).
More than two years have lasted since the emergence of COVID-19 in the world. It is well known

the transmission of disease will necessarily be affected by other factors such as media coverage,
seasonal changes and so on [42–47]. Considering the seasonal effect or the switching of environments
in model (2) will be an interesting research topic. We leave this for our future investigation.
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Appendix

The following lemma is from [33], which is used in the establishment of conditions for the
persistence of disease.

Lemma A.1. Let Y be a random variable, suppose E exp(Y) + E exp(−Y) ≤ K1. Then the log-Laplace
transform φ(θ) = lnE exp(θY) is twice differentiable on [0, 0.5] and dφ

dθ (0) = EY, 0 ≤ d2φ

dθ2 (θ) ≤ 2K2,

θ ∈ [0, 0.5] for some K2 > 0 depending only on K1. Thus, it follows from Taylor’s expansion that

φ(θ) ≤ θEY + K2θ
2, θ ∈ [0, 0.5].
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