Research article

A new difference of anisotropic and isotropic total variation regularization method for image restoration

  • Received: 07 May 2023 Revised: 18 June 2023 Accepted: 27 June 2023 Published: 07 July 2023
  • Total variation (TV) regularizer has diffusely emerged in image processing. In this paper, we propose a new nonconvex total variation regularization method based on the generalized Fischer-Burmeister function for image restoration. Since our model is nonconvex and nonsmooth, the specific difference of convex algorithms (DCA) are presented, in which the subproblem can be minimized by the alternating direction method of multipliers (ADMM). The algorithms have a low computational complexity in each iteration. Experiment results including image denoising and magnetic resonance imaging demonstrate that the proposed models produce more preferable results compared with state-of-the-art methods.

    Citation: Benxin Zhang, Xiaolong Wang, Yi Li, Zhibin Zhu. A new difference of anisotropic and isotropic total variation regularization method for image restoration[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14777-14792. doi: 10.3934/mbe.2023661

    Related Papers:

  • Total variation (TV) regularizer has diffusely emerged in image processing. In this paper, we propose a new nonconvex total variation regularization method based on the generalized Fischer-Burmeister function for image restoration. Since our model is nonconvex and nonsmooth, the specific difference of convex algorithms (DCA) are presented, in which the subproblem can be minimized by the alternating direction method of multipliers (ADMM). The algorithms have a low computational complexity in each iteration. Experiment results including image denoising and magnetic resonance imaging demonstrate that the proposed models produce more preferable results compared with state-of-the-art methods.



    加载中


    [1] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
    [2] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521
    [3] L. Condat, Discrete total variation: New definition and minimization, SIAM J. Imaging Sci., 10 (2017), 1258–1290. https://doi.org/10.1137/16M1075247 doi: 10.1137/16M1075247
    [4] Z. Jia, M. K. Ng, W. Wang, Color image restoration by saturation-value total variation, SIAM J. Imaging Sci., 12 (2019), 972–1000. https://doi.org/10.1137/16M1075247 doi: 10.1137/16M1075247
    [5] S. Pan, Q. Dai, H. Chen, Global optimality analysis and solution of the total variation signal denoising model, Math. Biosci. Eng., 20 (2023), 6932–6946. https://doi.org/10.3934/mbe.2023299 doi: 10.3934/mbe.2023299
    [6] D. Xiao, J. Li, R. Zhao, S. Qi, Y. Kang, Iterative CT reconstruction based on ADMM using shearlet sparse regularization, Math. Biosci. Eng., 19 (2022), 11840–11853. https://doi.org/10.3934/mbe.2022552 doi: 10.3934/mbe.2022552
    [7] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [8] J. Fan, H. Peng, Nonconcave penalized likelihood with a diverging number of parameters, Ann. Stat., 32 (2004), 928–961. https://doi.org/10.1214/009053604000000256 doi: 10.1214/009053604000000256
    [9] T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, J. Mach. Learn. Res., 11 (2010), 1081–1107.
    [10] S. Zhang, J. Xin, Minimization of transformed L1 penalty: theory, difference of convex function algorithm, and robust application in compressed sensing, Math. Program., 169 (2018), 307–336. https://doi.org/10.1007/s10107-018-1236-x doi: 10.1007/s10107-018-1236-x
    [11] Y. Lou, P. Yin, Q. He, J. Xin, Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2, J. Sci. Comput., 64 (2015), 178–196. https://doi.org/10.1007/s10915-014-9930-1 doi: 10.1007/s10915-014-9930-1
    [12] Y. Wang, J. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248–272. https://doi.org/10.1137/080724265 doi: 10.1137/080724265
    [13] M. Fortin, R. Glowinski, On decomposition-coordination methods using an augmented lagrangian, Stud. Math. Appl., 15 (1983), 97–146. https://doi.org/10.1016/S0168-2024(08)70028-6 doi: 10.1016/S0168-2024(08)70028-6
    [14] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
    [15] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1 doi: 10.1007/s10851-010-0251-1
    [16] T. Goldstein, S. Osher, The split Bregman method for $L_1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323–343. https://doi.org/10.1137/080725891 doi: 10.1137/080725891
    [17] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459–494. https://doi.org/10.1007/s10107-013-0701-9 doi: 10.1007/s10107-013-0701-9
    [18] H. L. Thi, T. P. Dinh, DC programming and DCA: thirty years of developments, Math. Program., 169 (2018), 5–68. https://doi.org/10.1007/s10107-018-1235-y doi: 10.1007/s10107-018-1235-y
    [19] P. D. Tao, Algorithms for solving a class of nonconvex optimization problems, methods of subgradients, in North-Holland Mathematics Studies, 129 (1986), 249–271. https://doi.org/10.1016/S0304-0208(08)72402-2
    [20] C. Chuang, H. He, Z. Zhang, A unified Douglas-Rachford algorithm for generalized DC programming, J. Global Optim., 82 (2022), 331–349. https://doi.org/10.1007/s10898-021-01079-y doi: 10.1007/s10898-021-01079-y
    [21] Y. You, Y. Niu, A refined inertial DC algorithm for DC programming, Optim. Eng., 24 (2023), 65–91. https://doi.org/10.1007/s11081-022-09716-5 doi: 10.1007/s11081-022-09716-5
    [22] F. J. Aragon-Artacho, R. Campoy P. T. Vuong, The boosted DC algorithm for linearly constrained DC programming, Set-Valued Var. Anal., 30 (2022), 1265–1289. https://doi.org/10.1007/s11228-022-00656-x doi: 10.1007/s11228-022-00656-x
    [23] F. J. Aragon-Artacho, M. T. Fleming, P. T. Vuong, Accelerating the DC algorithm for smooth functions, Math. Program., 169 (2018), 95–118. https://doi.org/10.1007/s10107-017-1180-1 doi: 10.1007/s10107-017-1180-1
    [24] B. Wen, X. Chen, T. K. Pong, A proximal diference-of-convex algorithm with extrapolation, Comput. Optim. Appl., 69 (2018), 297–324. https://doi.org/10.1007/s10589-017-9954-1 doi: 10.1007/s10589-017-9954-1
    [25] K. Bui, F. Park, Y. Lou, J. Xin. A weighted difference of anisotropic and isotropic total variation for relaxed Mumford-Shah color and multiphase image segmentation, SIAM J. Imaging Sci., 14 (2021), 1078–1113. https://doi.org/10.1137/20M1337041 doi: 10.1137/20M1337041
    [26] Y. Lou, T. Zeng, S, Osher, J. Xin, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798–1823. https://doi.org/10.1137/14098435X doi: 10.1137/14098435X
    [27] Z. Li, Y. Lou, T. Zeng, Variational multiplicative noise removal by DC programming, J. Sci. Comput., 68 (2016), 1200–1216. https://doi.org/10.1007/s10915-016-0175-z doi: 10.1007/s10915-016-0175-z
    [28] Y. Sun, H. Chen, J. Tao, L. Lei, Computed tomography image reconstruction from few views via Log-norm total variation minimization, Digit. Signal Process., 88 (2019), 172–181. https://doi.org/10.1016/j.dsp.2019.02.009 doi: 10.1016/j.dsp.2019.02.009
    [29] B. Zhang, G. Zhu, Z. Zhu, A TV-log nonconvex approach for image deblurring with impulsive noise, Signal Process., 174 (2020), 107631. https://doi.org/10.1016/j.sigpro.2020.107631 doi: 10.1016/j.sigpro.2020.107631
    [30] H. L. Thi, T. P. Dinh, Open issues and recent advances in DC programming and DCA, J. Global Optim., 2023. https://doi.org/10.1007/s10898-023-01272-1
    [31] T. Wu, Y. Zhao, Z. Mao, L. Shi, Z. Li, T. Zeng, Image segmentation via Fischer-Burmeister total variation and thresholding, Adv. Appl. Math. Mech., 14 (2022), 960–988. https://doi.org/10.4208/aamm.OA-2021-0126 doi: 10.4208/aamm.OA-2021-0126
    [32] M. Lustig, D. Donoho, J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58 (2007), 1182–1195. https://doi.org/10.1002/mrm.21391 doi: 10.1002/mrm.21391
    [33] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
    [34] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE T. Image Process., 26 (2017), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206 doi: 10.1109/TIP.2017.2662206
    [35] L. Huo, W. Chen, H. Ge, M. K. Ng, Stable image reconstruction using transformed total variation minimization, SIAM J. Imaging Sci., 15 (2022), 1104–1139. https://doi.org/10.1137/120868281 doi: 10.1137/120868281
    [36] Y. Liu, Z. Zhan, J. Cai, D. Guo, Z. Chen, X. Qu, Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging, IEEE Trans. Med. Imaging, 35 (2016), 2130–2140. https://doi.org/10.1109/TMI.2016.2550080 doi: 10.1109/TMI.2016.2550080
    [37] W. Wang, D. Cao, X. Li, N. Cao, Compressively sampled magnetic resonance imaging reconstruction based on split Bregman iteration with general non-uniform threshold shrinkage, Magn. Reson. Imaging, 85 (2022), 297–307. https://doi.org/10.1016/j.mri.2021.10.015 doi: 10.1016/j.mri.2021.10.015
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1283) PDF downloads(105) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog