In this paper, we investigate the existence and uniqueness of solutions for nonlinear quadratic iterative equations in the sense of the Caputo fractional derivative with different boundary conditions. Under a one-sided-Lipschitz condition on the nonlinear term, the existence and uniqueness of a solution for the boundary value problems of Caputo fractional iterative equations with arbitrary order is demonstrated by applying the Leray-Schauder fixed point theorem and topological degree theory, where the solution for the case of fractional order greater than 1 is monotonic. Then, the existence and uniqueness of a solution for the period and integral boundary value problems of Caputo fractional quadratic iterative equations in $ R^N $ are also demonstrated. Furthermore, the well posedness of the control problem of a nonlinear iteration system with a disturbance is established by applying set-valued theory, and the existence of solutions for a neural network iterative system is guaranteed. As an application, an example is provided at the end.
Citation: Cuiying Li, Rui Wu, Ranzhuo Ma. Existence of solutions for Caputo fractional iterative equations under several boundary value conditions[J]. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
In this paper, we investigate the existence and uniqueness of solutions for nonlinear quadratic iterative equations in the sense of the Caputo fractional derivative with different boundary conditions. Under a one-sided-Lipschitz condition on the nonlinear term, the existence and uniqueness of a solution for the boundary value problems of Caputo fractional iterative equations with arbitrary order is demonstrated by applying the Leray-Schauder fixed point theorem and topological degree theory, where the solution for the case of fractional order greater than 1 is monotonic. Then, the existence and uniqueness of a solution for the period and integral boundary value problems of Caputo fractional quadratic iterative equations in $ R^N $ are also demonstrated. Furthermore, the well posedness of the control problem of a nonlinear iteration system with a disturbance is established by applying set-valued theory, and the existence of solutions for a neural network iterative system is guaranteed. As an application, an example is provided at the end.
[1] | V. R. Petuhov, On a boundary value problem, Trudy Sem. Teor. Differ. Uravneniis Otklon. Arg. Univ. Družby Narodov Patrisa Limum, 3 (1965), 252–255. |
[2] | C. Derbazi, Z. Baitiche, M. S. Abdo, K. Shah, B. Abdalla, T. Abdeljawad, Extremal solutions of generalized Caputo-type fractional-order boundary value problems using monotone iterative method, Fractal Fract., 6 (2008), 146. https://doi.org/10.3390/fractalfract6030146 doi: 10.3390/fractalfract6030146 |
[3] | A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 16 (2013), 962–977. https://doi.org/10.2478/s13540-013-0059-y doi: 10.2478/s13540-013-0059-y |
[4] | A. Boutiara, M. Benbachir, J. Alzabut, M. E. Samei, Monotone iterative and upper-lower solution techniques for solving the nonlinear $\Psi$-Caputo fractional boundary value problem, Fractal Fract., 5 (2021), 194. https://doi.org/10.3390/fractalfract5040194 doi: 10.3390/fractalfract5040194 |
[5] | Z. Baitiche, K. Guerbati, M. Benchohra, Y. Zhou, Solvability of fractional multi-point BVP with nonlinear growth at resonance, J. Contemp. Math. Anal., 55 (2020), 126–142. https://doi.org/10.3103/S1068362320020041 doi: 10.3103/S1068362320020041 |
[6] | M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, RACSAM, 112 (2018), 25–35. https://doi.org/10.1007/s13398-016-0359-2 doi: 10.1007/s13398-016-0359-2 |
[7] | K. Wang, On the equation $x'(t) = f(x(x(t)))$, Funkcial. Ekvac., 33 (1990), 405–425. |
[8] | E. R. Kaufmann, Existence and uniqueness of solutions for a second-order iterative boundary-value problem, Electron. J. Differ. Equ., 150 (2018), 1–6. |
[9] | A. Bouakkaz, A. Ardjouni, R. Khemis, A. Djoudi, Periodic solutions of a class of third-order functional differential equations with iterative source terms, Bol. Soc. Mat. Mex., 26 (2020), 443–458. https://doi.org/10.1007/s40590-019-00267-x doi: 10.1007/s40590-019-00267-x |
[10] | E. Egri, I. A. Rus, First order iterative functional-differential equation with parameter, Stud. Univ. Babes-Bolyai Math., 52 (2007), 67–80. |
[11] | H. Y. Zhao, J. Liu, Periodic solutions of an iterative functional differential equation with variable coefficients, Math. Methods Appl. Sci., 1 (2016), 286–292. https://doi.org/10.1002/mma.3991 doi: 10.1002/mma.3991 |
[12] | H. Y. Zhao, M. Fečkan, Periodic solutions for a class of differential equation with delays depending on state, Math. Commun., 23 (2018), 29–42. |
[13] | A. Bouakkaz, A. Ardjouni, A. Djoudi, Periodic solutions for a second order nonlinear functional differential equation with iterative terms by schauder's fixed point theorem, Acta Math. Univ. Comen., 87 (2018), 223–235. |
[14] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Springer Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[15] | V. E. Tarasov, Fractional dynamics, Nonlinear Physical Science Springer Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14003-7 |
[16] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[17] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1998. |
[18] | S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives-theory and applications gordon and breach, Gordon and Breach Science Publishers, 1993. |
[19] | J. Alzabut, J. Viji, V. Muthulakshmi, W. Sudsutad, Oscillatory behavior of a type of generalized proportional fractional differential equations with forcing and damping terms, Mathematics, 8 (2020), 1037. https://doi.org/10.3390/math8061037 doi: 10.3390/math8061037 |
[20] | X. Lin, Z. Zhao, Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–10. https://doi.org/10.14232/ejqtde.2016.1.12 doi: 10.14232/ejqtde.2016.1.12 |
[21] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Elsevier, 2016. |
[22] | Y. Cheng, K. Jin, R. P. Agarwal, Rotating periodic integrable solutions for second-order differential systems with nonresonance condition, Turk. J. Math., 45 (2021), 233–243. https://doi.org/10.3906/mat-2005-63 doi: 10.3906/mat-2005-63 |
[23] | Y. Cheng, S. Gao, R. P. Agarwal, Rotational periodic boundary value problem for a fractional nonlinear differential equation, Math. Method. Appl. Sci., 2020, 1–15. https://doi.org/10.1002/mma.6860 doi: 10.1002/mma.6860 |
[24] | Y. Belgaid, M. Helal, A. Lakmeche, E. Venturino, A mathematical study of a coronavirus model with the Caputo fractional-order derivative, Fractal Fract., 5 (2021), 87. https://doi.org/10.3390/fractalfract5030087 doi: 10.3390/fractalfract5030087 |
[25] | S. Gao, R. Wu, C. Li, The existence and uniqueness of solution to sequential fractional differential equation with affine periodic boundary value conditions, Symmetry, 14 (2022), 1389. https://doi.org/10.3390/sym14071389 doi: 10.3390/sym14071389 |
[26] | A. Das, B. Hazarika, S. K. Panda, V. Vijayakumar, An existence result for an infinite system of implicit fractional integral equations via generalized Darbo's fixed point theorem, Comput. Appl. Math., 40 (2021), 143. https://doi.org/10.1007/s40314-021-01537-z doi: 10.1007/s40314-021-01537-z |
[27] | T. Abdeljawad, E. Karapinar, S. K. Panda, N. Mlaiki, Solutions of boundary value problems on extended-Branciari $b$-distance, J. Inequal. Appl., 2020 (2020), 103. https://doi.org/10.1186/s13660-020-02373-1 doi: 10.1186/s13660-020-02373-1 |
[28] | S. K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Solitons Fract., 142 (2021), 110390. https://doi.org/10.1016/j.chaos.2020.110390 doi: 10.1016/j.chaos.2020.110390 |
[29] | S. K. Panda, T. Abdeljawad, C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and $L^{p}$-Fredholm integral equations, Alex. Eng. J., 59 (2020), 1959–1970. https://doi.org/10.1016/j.aej.2019.12.027 doi: 10.1016/j.aej.2019.12.027 |
[30] | M. M. Matar, A. A. Lubbad, J. Alzabut, On $p$-Laplacian boundary value problem involving Caputo-Katugampula fractional derivatives, Math. Methods Appl. Sci., 51 (2020), 1485–1526. https://doi.org/10.1002/mma.6534 doi: 10.1002/mma.6534 |
[31] | K. D. Kucche, A. D. Mali, On the nonlinear $\Psi$-Hilfer fractional differential equations, Comput. Appl. Math., 41 (2019), 86. https://doi.org/10.1007/s40314-022-01800-x doi: 10.1007/s40314-022-01800-x |
[32] | M. E. Samei, R. Ghaffari, S. W. Yao, M. K. A. Kaabar, F. Martínez, M. Inc, Existence of solutions for a singular fractional $q$-differential equations under Riemann-Liouville integral boundary condition, Symmetry, 13 (2021), 1235. https://doi.org/10.3390/sym13071235 doi: 10.3390/sym13071235 |
[33] | R. Wu, Y. Cheng, R. P. Agarwal, Rotational periodic solutions for fractional iterative systems, AIMS Math., 6 (2021), 11233–11245. https://doi.org/10.3934/math.2021651 doi: 10.3934/math.2021651 |
[34] | R. W. Ibrahim, A. Kilicman, F. H. Damag, Existence and uniqueness for a class of iterative fractional differential equations, Adv. Differ. Equ., 2015 (2015), 78. https://doi.org/10.1186/s13662-015-0421-y doi: 10.1186/s13662-015-0421-y |
[35] | K. Song, H. Wu, L. Wang, Lur'e-Postnikov Lyapunov function approach to global robust mittag-leffler stability of fractional-order neural networks, Adv. Differ. Equ., 2017 (2017), 232. https://doi.org/10.1186/s13662-017-1298-8 doi: 10.1186/s13662-017-1298-8 |
[36] | H. Ye, J. Gao, Y. Ding, A generalized gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |
[37] | H. Wu, L. Wang, Y. Wang, P. Niu, B. Fang, Global mittag-leffler projective synchronization for fractional-order neural networks: An LMI-based approach, Adv. Differ. Equ., 2016 (2016), 132. https://doi.org/10.1186/s13662-016-0857-8 doi: 10.1186/s13662-016-0857-8 |
[38] | J. Chen, Z. Zeng, P. Jiang, Global Mittag-leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 51 (2014), 1–8. https://doi.org/10.1016/j.neunet.2013.11.016 doi: 10.1016/j.neunet.2013.11.016 |
[39] | A. Granas, J. Dugundji, Fixed point theory, Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[40] | K. Diethelm, The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, Springer Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[41] | Y. Cheng, F. Cong, H. Hua, Anti-periodic solutions for nonlinear evolution equations, Adv. Differ. Equ., 2012 (2012), 165. https://doi.org/10.1186/1687-1847-2012-165 doi: 10.1186/1687-1847-2012-165 |