Research article

Existence of solutions for fractional differential equation with periodic boundary condition

  • Received: 03 December 2021 Revised: 20 January 2022 Accepted: 20 January 2022 Published: 21 January 2022
  • MSC : 34A08, 34A12

  • We investigate the existence of solutions for a Caputo fractional differential equation with periodic boundary condition. Using the positivity of Green's function of the corresponding linear equation, we show the existence of positive solutions by using Krasnosel'skii fixed point theorem. Meanwhile, by using monotone iterative method and lower and upper solutions method, we also discuss the existence of extremal solutions for a special case.

    Citation: Xiaoxin Zuo, Weibing Wang. Existence of solutions for fractional differential equation with periodic boundary condition[J]. AIMS Mathematics, 2022, 7(4): 6619-6633. doi: 10.3934/math.2022369

    Related Papers:

  • We investigate the existence of solutions for a Caputo fractional differential equation with periodic boundary condition. Using the positivity of Green's function of the corresponding linear equation, we show the existence of positive solutions by using Krasnosel'skii fixed point theorem. Meanwhile, by using monotone iterative method and lower and upper solutions method, we also discuss the existence of extremal solutions for a special case.



    加载中


    [1] B. Ahmad, J. J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl., 62 (2011), 1150–1156. https://doi.org/10.1016/j.camwa.2011.02.034 doi: 10.1016/j.camwa.2011.02.034
    [2] R. P. Agarwal, M. Benchohra, S. Hamani, Boundary value problems for fractional differential equations, Georgian Math. J., 16 (2009), 401–411. https://doi.org/10.1515/GMJ.2009.401 doi: 10.1515/GMJ.2009.401
    [3] O. A. Arqub, M. Al-Smadi, Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm, J. Porous. Media, 23 (2020), 783–804. https://doi.org/10.1615/JPorMedia.2020025011 doi: 10.1615/JPorMedia.2020025011
    [4] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [5] O. A. Arqub, M. Al-Smadi, R. A. Gdairi, M. Alhodaly, T. Hayat, Implementation of reproducing kernel Hilbert algorithm for pointwise numerical solvability of fractional Burgersi model in time-dependent variable domain regarding constraint boundary condition of Robin, Results Phys., 24 (2021), 104210. https://doi.org/10.1016/j.rinp.2021.104210 doi: 10.1016/j.rinp.2021.104210
    [6] Z. B. Bai, H. S. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [7] M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 324561 https://doi.org/10.1155/2009/324561 doi: 10.1155/2009/324561
    [8] A. Cabada, T. Kisela, Existence of positive periodic solutions of some nonlinear fractional differential equations, Commun. Nonlinear Sci., 50 (2017), 51–67. https://doi.org/10.1016/j.cnsns.2017.02.010 doi: 10.1016/j.cnsns.2017.02.010
    [9] M. A. Darwish, S. K. Ntouyas, Existence results for first order boundary value problems for fractional differential equations with four-point integral boundary conditions, Miskolc Math., 15 (2014), 51–61. https://doi.org/10.18514/MMN.2014.511 doi: 10.18514/MMN.2014.511
    [10] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. https://doi.org/10.1006/jmaa.1996.0456 doi: 10.1006/jmaa.1996.0456
    [11] S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
    [12] H. Fazli, H. G. Sun, S. Aghchi, J. J. Nieto, On a class of nonlinear nonlocal fractional differential equations, Carpathian J. Math., 37 (2021), 441–448. https://doi.org/10.37193/CJM.2021.03.07 doi: 10.37193/CJM.2021.03.07
    [13] H. Fazli, H. G. Sun, S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math., 98 (2021), 1–10. https://doi.org/10.1080/00207160.2020.1720662 doi: 10.1080/00207160.2020.1720662
    [14] B. Jin, Fractional differential equations–An approach via fractional derivatives, Springer, 2021. https://doi.org/10.1007/978-3-030-76043-4
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [16] X. Y. Li, S. Liu, W. Jiang, Positive solutions for boundary value problem of nonlinear fractional functional differential equations, Appl. Math. Comput., 217 (2011), 9278–9285. https://doi.org/10.1016/j.amc.2011.04.006 doi: 10.1016/j.amc.2011.04.006
    [17] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993.
    [18] M. M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order $1 < \alpha\leq 2$, Acta Math. Univ. Comen., 84 (2015), 51–57.
    [19] J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. Math. Lett., 23 (2010), 1248–1251. https://doi.org/10.1016/j.aml.2010.06.007 doi: 10.1016/j.aml.2010.06.007
    [20] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [21] Y. Qiao, Z. F. Zhou, Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions, Bound. Value Probl., 2017 (2017), 11. https://doi.org/10.1186/s13661-016-0745-x doi: 10.1186/s13661-016-0745-x
    [22] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differ. Equ., 190 (2003), 643–662. https://doi.org/10.1016/S0022-0396(02)00152-3 doi: 10.1016/S0022-0396(02)00152-3
    [23] Z. L. Wei, Q. D. Li, J. L. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023
    [24] W. X. Zhou, Y. D. Chu, Existence of solutions for fractional differential equations with multi-point boundary conditions, Commun. Nonlinear Sci., 17 (2012), 1142–1148. https://doi.org/10.1016/j.cnsns.2011.07.019 doi: 10.1016/j.cnsns.2011.07.019
    [25] E. Zeidler, Nonlinear functional analysis and its applications. Fixed-point theorems, New York: Springer-Verlag, 1986.
    [26] S. Q. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093. https://doi.org/10.1016/j.na.2009.01.043 doi: 10.1016/j.na.2009.01.043
    [27] S. Q. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ., 36 (2006), 1–12.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1897) PDF downloads(175) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog