Research article

Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions

  • Received: 17 August 2021 Accepted: 28 September 2021 Published: 09 October 2021
  • MSC : 34A08, 26A33, 34A34

  • This research paper deals with two novel varieties of boundary value problems for nonlinear hybrid fractional differential equations involving generalized fractional derivatives known as the Ψ-Caputo fractional operators. Such operators are generated by iterating a local integral of a function with respect to another increasing positive function Ψ. The existence results to the proposed systems are obtained by using Dhage's fixed point theorem. Two pertinent examples are provided to confirm the feasibility of the obtained results. Our presented results generate many special cases with respect to different values of a Ψ function.

    Citation: Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi. Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions[J]. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010

    Related Papers:

    [1] Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075
    [2] Dehong Ji, Weigao Ge . A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459
    [3] Ala Eddine Taier, Ranchao Wu, Naveed Iqbal . Boundary value problems of hybrid fractional integro-differential systems involving the conformable fractional derivative. AIMS Mathematics, 2023, 8(11): 26260-26274. doi: 10.3934/math.20231339
    [4] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [5] Salma Noor, Aman Ullah, Anwar Ali, Saud Fahad Aldosary . Analysis of a hybrid fractional coupled system of differential equations in $ n $-dimensional space with linear perturbation and nonlinear boundary conditions. AIMS Mathematics, 2024, 9(6): 16234-16249. doi: 10.3934/math.2024785
    [6] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [7] Mohamed Hannabou, Muath Awadalla, Mohamed Bouaouid, Abd Elmotaleb A. M. A. Elamin, Khalid Hilal . One class class of coupled system fractional impulsive hybrid integro- differential equations. AIMS Mathematics, 2024, 9(7): 18670-18687. doi: 10.3934/math.2024908
    [8] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
    [9] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [10] Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633
  • This research paper deals with two novel varieties of boundary value problems for nonlinear hybrid fractional differential equations involving generalized fractional derivatives known as the Ψ-Caputo fractional operators. Such operators are generated by iterating a local integral of a function with respect to another increasing positive function Ψ. The existence results to the proposed systems are obtained by using Dhage's fixed point theorem. Two pertinent examples are provided to confirm the feasibility of the obtained results. Our presented results generate many special cases with respect to different values of a Ψ function.



    Fractional calculus [1,2] is a field of mathematics that deals with integrals and derivatives of fractional orders. The most used fractional operators are the Riemann-Liouville and Caputo types. There are other types of fractional derivatives as well, we allude to [3,4,5,6,7,8,9,10] and references therein. More recently, Almeida [11] and Sousa et al. [12] have provided fractional operarors to generalize Caputo and Hilfer types respectively with respect to another function, which have become known as ψ-Caputo and ψ-Hilfer, also Jarad and Abdeljawad in [13] have introduced interesting properties of this generalized operator in the frame of a ψ function including the generalized Laplace transform.

    Due to the rapid and intense growth in fractional calculus and its applications, fractional differential equations (FDEs) have been of extraordinary interest, so, several authors have applied some generalized fractional operators to investigate the qualitative analysis of FDEs, see [14,15,16,17,18,19,20,21,22,23].

    Hybrid differential equations include the fractional derivatives of an unknown function hybrid with the nonlinearity relying upon it. This class of equations emerges from a wide range of spaces of applied and physical sciences, e.g., in the redirection of a bent pillar having a consistent or changing cross-area, a three-layer shaft, electromagnetic waves, or gravity-driven streams, etc. Hybrid FDEs have been investigated using various types of fractional derivatives in literature (see, e.g. [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39]. For instance, Dhage and Lakshmikanathm [25] investigated the existence and uniqueness results for a hybrid differential equation:

    {ddϑ(υ(ϑ)g1(ϑ,υ(ϑ)))=g2(ϑ,υ(ϑ)),ϱ[0,1],υ(ϑ0)=υ0,

    where g1:[0,1]×RR{0} and g2:[0,1]×RR are continuous.

    Zhao et al. [24] studied the existence and uniqueness results for a hybrid FDE in the frame of Riemann-Liouville operators:

    {RLDϱ0+(υ(ϑ)g1(ϑ,υ(ϑ)))=g2(ϑ,υ(ϑ)),ϱ[0,T],υ(0)=0,

    where g1:[0,T]×RR{0} and g2:[0,T]×RR are continuous.

    Motivated by the above investigations, we discuss two nonlinear fractional differential hybrid systems subjected to periodic boundary conditions. The first fractional nonlinear system is given by

    {CDϱ,Ψa+(υ(ϑ)g1(ϑ,υ(ϑ)))=g2(ϑ,υ(ϑ)), ϱ(0,1)υ(a)=υ(b), (1.1)

    and the second system has the following form

    {CDϱ,Ψa+(υ(ϑ)g1(ϑ,υ(ϑ)))=g2(ϑ,υ(ϑ)), ϱ(1,2),υ(a)=υ(b), υ(a)=υ(b), (1.2)

    where ϑ:=[a,b],CDϱ,Ψa+ is the Ψ-Caputo fractional derivative, g1:×RR{0} and g2:×RR are continuous with g1 and g2 are identically zero at the origin and g2(ϑ,0)=0.

    In this respect, we study the existence of solutions to two types of hybrid FDEs involving generalized Caputo fractional derivatives rather than the classical Caputo one. The hybrid problems have been discussed in the literature under classical FDEs, while we investigate the generalized FDEs under similar boundary conditions which is the novel contribution of this research paper. Furthermore, the special cases generated from various values of the positive increasing function Ψ are covered in our examination.

    The paper is coordinated as follows. In Section 2, we present a few documentations, definitions and lemmas. In Section 3, we demonstrate existence results for problems (1.1) and (1.2) by utilizing Dhage's fixed point theorem. In Section 4, we illustrate the acquired outcomes by examples. At last, we close our paper with a conclusion.

    Let ΨC1(,R) be an increasing differentiable function such that Ψ(ϑ)0 for all ϑ. Now, we start by defining Ψ-fractional integral and derivative:

    Definition 2.1. [1] The Ψ–Riemann-Liouville fractional integral of order ϱ>0 for an integrable function υ:R is given by

    Iϱ;Ψa+υ(ϑ)=1Γ(ϱ)ϑaΨ(ς)(Ψ(ϑ)Ψ(ς))ϱ1υ(ς)dς.

    One can deduce that

    Dϑ (Iϱ;Ψa+υ(ϑ))=Ψ(ϑ)Iϱ1;Ψa+υ(ϑ), ϱ>1,

    where Dϑ=ddt.

    Definition 2.2. [11] For n1<ϱ<n(nN) and υ,ΨCn(,R), the Ψ-Caputo fractional derivative of a function υ of order ϱ is given by

    CDϱ;Ψa+υ(ϑ)=Inϱ;Ψa+(DϑΨ(ϑ))nυ(ϑ),

    where n=[ϱ]+1 for ϱN, n=ϱ for ϱN.

    From Definition 2.2, we can express Ψ-Caputo fractional derivative by formula

    CDϱ;Ψa+υ(ϑ)={ϑaΨ(ς)(Ψ(ϑ)Ψ(ς))nϱ1Γ(nϱ)(DϑΨ(ς))nυ(ς)dς,ifϱN,(DϑΨ(ϑ))nυ(ϑ)ifϱN.

    Lemma 2.3. [1] For ϱ1,ϱ2>0, and υC(,R), we have

    Iϱ1;Ψa+Iϱ2;Ψa+υ(ϑ)=Iϱ1+ϱ2;Ψa+υ(ϑ),a.e.ϑ.

    Lemma 2.4. [11] Let ϱ>0. If υC(,R), then

    CDϱ;Ψa+Iϱ;Ψa+υ(ϑ)=υ(ϑ),ϑ,

    and if υCn1(,R), then

    Iϱ;Ψca+Dϱ;Ψa+υ(ϑ)=υ(ϑ)n1k=0(DϑΨ(ϑ))kυ(a)k![Ψ(ϑ)Ψ(a)]k,ϑ.

    Lemma 2.5. [1,11] For ϑ>a, ϱ0,β>0. If ϰβ(ϑ)=(Ψ(ϑ)Ψ(a))β1, then

    Iϱ;Ψa+ϰβ(ϑ)=Γ(β)Γ(β+ϱ)ϰβ+ϱ(ϑ);

    CDϱ;Ψa+ϰβ(ϑ)=Γ(β)Γ(βϱ)ϰβϱ(ϑ);

    CDϱ;Ψa+ϰk+1(ϑ)=0,for allk{0,,n1},nN.

    Now, we mention the key outcomes to the forthcoming analysis.

    Theorem 2.6. [40,41] Let X be a closed convex and bounded subset of the Banach algebra and let A: and B:X be two operators such that

    (a) A is Lipschitzian with Lipschitz constant LA,

    (b) B is compact and continuous,

    (c) υ=AυBυυX for all υX, and

    (d) LAMB<1, where MB=B(X)=sup{Bυ:υX}

    Then the operator equation υ=AυBυ has a solution in X.

    Lemma 2.7. A function υ is a solution of the fractional integral equation

    υ(ϑ)=1h1(ϑ)(Iϱ,Ψa+h2(ϑ)+h1(a)h1(b)h1(a)Iϱ,Ψa+h2(b)) (2.1)

    if and only if υ is a solution of the periodic hybrid system

    {CDϱ,Ψa+(υ(ϑ)h1(ϑ))=h2(ϑ),ϱ(0,1),υ(a)=υ(b), (2.2)

    Proof. Applying the operator Iϱ,Ψa+ on both sides for the first equation of (2.2) and using Lemma 2.4, we have

    υ(ϑ)h1(ϑ)=Iϱ,Ψa+h2(ϑ)+c0. (2.3)

    Then, at ϑ=a and ϑ=b, we get

    υ(a)h1(a)=c0,υ(b)h1(b)=Iϱ,Ψa+h2(b)+c0.

    The periodic condition (υ(a)=υ(b)) implies that

    c0h1(a)=Iϱ,Ψa+h2(b)h1(b)+c0h1(b).

    Hence

    c0=Iϱ,Ψa+h2(b)(h1(a)h1(b)h1(a)).

    Substituting the value of c0 into (2.3), we get the solution (2.1).

    Conversely, it is clear that if υ satisfies Eq (2.1), then system (2.2) is satisfied by υ, due to Lemma 2.4 and Lemma 2.5. The proof is completed.

    Lemma 2.8. A function υ is a solution of the fractional integral equation

    υ(ϑ)=1h1(ϑ)(Iϱ,Ψa+h2(ϑ)μ(ϑ)Iϱ,Ψa+h2(b)+ν(ϑ)Iϱ1,Ψa+h2(b)) (2.4)

    if and only if υ is a solution of the periodic hybrid system

    {CDϱ,Ψa+(υ(ϑ)h1(ϑ))=h2(ϑ),ϱ(1,2),υ(a)=υ(b),υ(a)=υ(b), (2.5)

    where

    μ(ϑ):=h11(ϑ)(h1(a)(h1(a)Ψ(b)h1(b)Ψ(a))(h1(a)h1(b)h1(b)h1(a))(Ψ(ϑ)Ψ(a)))(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a)),

    and

    ν(ϑ):=h11(ϑ)h1(a)Ψ(b)((Ψ(b)Ψ(ϑ))h1(a)+(Ψ(ϑ)Ψ(a))h1(b))(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a)).

    Proof. Applying the operator Iϱ,Ψa+ on both sides for the first equation of (2.5) and using Lemma 2.4, we have

    υ(ϑ)h1(ϑ)=Iϱ,Ψa+h2(ϑ)+c0+c1[Ψ(ϑ)Ψ(a)]. (2.6)

    Differentiating Eq (2.6) with respect to ϑ and using Leibniz rule yields that

    υ(ϑ)h1(ϑ)+υ(ϑ)h1(ϑ)=Ψ(ϑ)Iϱ1,Ψa+h2(ϑ)+c1Ψ(ϑ).

    Then, at ϑ=a and ϑ=b, we get

    υ(a)h1(a)=c0,υ(b)h1(b)=Iϱ,Ψa+h2(b)+c0+c1[Ψ(b)Ψ(a)],

    and

    υ(a)h1(a)+υ(a)h1(a)=c1Ψ(a)υ(b)h1(b)+υ(b)h1(b)=Ψ(b)Iϱ1,Ψa+h2(b)+c1Ψ(b).

    The boundary conditions imply that

    c0=h1(a)h1(b)h1(a)h1(b)Iϱ,Ψa+h2(b)+c1h1(a)h1(b)h1(a)h1(b)[Ψ(b)Ψ(a)], (2.7)

    and

    c1=h1(a)Ψ(b)h1(a)Ψ(b)h1(b)Ψ(a)Iϱ1,Ψa+h2(b)+c0h1(a)(h1(a)h1(b)h1(b)h1(a)h1(a)Ψ(b)h1(b)Ψ(a)). (2.8)

    Solving (2.7) and (2.8) in terms of c0 and c1, we obtain

    c0=h1(a)(h1(a)Ψ(b)h1(b)Ψ(a))Iϱ,Ψa+h2(b)(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a))(h1(a))2Ψ(b)[Ψ(b)Ψ(a)]Iϱ1,Ψa+h2(b)(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a)),

    and

    c1=h1(a)Ψ(b)(h1(a)h1(b))Iϱ1,Ψa+h2(b)(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a))+(h1(a)h1(b)h1(b)h1(a))Iϱ,Ψa+h2(b)(h1(b)h1(a))(h1(b)Ψ(a)h1(a)Ψ(b))+(h1(a)h1(b)h1(a)h1(b))(Ψ(b)Ψ(a)).

    Substituting the values of c0 and c1 into (2.6), we get the solution (2.4).

    The converse of the lemma follows by direct computation along with Lemmas 2.4 and 2.5.

    This finishes the proof.

    In order to achieve our main results, we list the following hypotheses:

    (H1) g2:×RR and g1:×RR{0} are continuous.

    (H2) g11:×RR is continuous and

    i) There exists a positive function ω with bounds ω, such that

    |g11(ϑ,υ1)g11(ϑ,υ2)|ω(ϑ)|υ1υ2|, (2.9)

    for each (ϑ,υ1),(ϑ,υ2)×R;

    ii) The mapping υg11(ϑ,υ) is increasing in </p><p>R</p><p> a.e. for each ϑ.

    (H3) There exists constant Mg2 such that

    |g2(ϑ,υ)|Mg2for each (ϑ,υ)×R.

    To simplify, we will use the following notations

    Mg1:=|g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))|,
    M:=(1+Mg1)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)Mg2, (2.10)
    sϱΨ(ϑ,ς)=Ψ(ς)(Ψ(t)Ψ(ς))ϱ1Γ(ϱ).

    Theorem 2.9. Suppose (H1)–(H3) hold. If

    Mω<1, (2.11)

    then hybrid problem (1.1) has a solution on .

    Proof. Define the set X={υC:υR}. Clearly, X is a convex, closed, bounded subset of C. Choose

    RMg101Mω, (2.12)

    where g10=supϑ|g11(ϑ,0)|. From Lemma 2.7, the nonlinear hybrid problem (1.1) is equivalent to the nonlinear fractional integral equation

    υ(ϑ)=g11(ϑ,υ(ϑ))(Iϱ,Ψa+g2(ϑ,υ(ϑ))+g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))Iϱ,Ψa+g2(b,υ(b))). (2.13)

    Define two operators A:CC and B:XC by

    Aυ(ϑ)=g11(ϑ,υ(ϑ)), ϑ, and
    Bυ(ϑ)=Iϱ,Ψa+g2(ϑ,υ(ϑ))+g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))Iϱ,Ψa+g2(b,υ(b)), ϑ.

    Then, (2.13) can be express in the operator form as

    υ(ϑ)=Aυ(ϑ)Bυ(ϑ), ϑ.

    To achieve Theorem 2.6, we will summarize the proof in the following steps:

    Step1:A is Lipschitzian on C.

    Let υ,υC. Then by (H2), for ϑ

    |Aυ(ϑ)Aυ(ϑ)|=|g11(ϑ,υ(ϑ))g11(ϑ,υ(ϑ))|ω(ϑ)|υ(ϑ)υ(ϑ)|,

    which leads to

    AυAυωυυ.

    So. A is Lipschitzian on C with Lipschitz constant ω.

    Step 2:B is completely continuous on X.

    Firstly, B is continuous on C, due to the continuity of g2,g1 implies that B is continuous too. Next, we shall prove that B(X) is uniformly bounded in X. For any υX, we have

    |Bυ(ϑ)|=|Iϱ,Ψa+g2(ϑ,υ(ϑ))+g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))Iϱ,Ψa+g2(b,υ(b))|ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+|g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))|basϱΨ(b,ς)|g2(ς,υ(ς))|dςMg2ϑasϱΨ(ϑ,ς)dς+Mg1Mg2basϱΨ(b,ς)dς(1+Mg1)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)Mg2,

    which implies

    Bυ(1+Mg1)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)Mg2=M.

    This shows that {Bυ:υX} is uniformly bounded set.

    To prove that B(X) is an equicontinuous set in X, let ϑ1,ϑ2(ϑ1<ϑ2). Then for any υX and by (H3), we get

    |B(υ)(ϑ2)B(υ)(ϑ1)||Iϱ,Ψ0+g2(ς,υ(ς))(ϑ2)Iϱ,Ψ0+g2(ς,υ(ς))(ϑ1)||ϑ2asϱΨ(ϑ2,ς)g2(ς,υ(ς))dςϑ1asϱΨ(ϑ1,ς)g2(ς,υ(ς))dς|1Γ(ϱ)ϑ1aΨ(ς)|(Ψ(ϑ1)Ψ(ς))ϱ1(Ψ(ϑ2)Ψ(ς))ϱ1||g2(ς,υ(ς))|dς+1Γ(ϱ)ϑ2ϑ1Ψ(ς)(Ψ(ϑ2)Ψ(ς))ϱ1|g2(ς,υ(ς))|dςMg2Γ(ϱ+1)[(Ψ(ϑ2)Ψ(a))ϱ(Ψ(ϑ1)Ψ(a))ϱ].

    Distinctly, the right-hand side of the a bove inequality tends to zero independently of υX as ϑ2ϑ1. As a result of the Ascoli-Arzela theorem, B is a completely continuous operator on X.

    Step 3: Assumption (c) of Theorem 2.6 is satisfied.

    Let υC and υX such that υ=AυBυ. Then

    |υ(ϑ)||Aυ(ϑ)||Bυ(ϑ)||g11(ϑ,υ(ϑ))|(ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+|g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))|basϱΨ(b,ς)|g2(ς,υ(ς))|dς)(|g11(ϑ,υ(ϑ))g11(ϑ,0)|+|g11(ϑ,0)|)(ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+Mg1basϱΨ(b,ς)|g2(ς,υ(ς))|dς)(ω|υ(ϑ)|+g10)(1+Mg1)Mg2(Ψ(b)Ψ(a))ϱΓ(ϱ+1)=(ω|υ(ϑ)|+g10)M,

    which gives

    υMg101MωR.

    Step 4: Assumption (d) of Theorem 2.6 holds.

    To this end, we show that ωN<1, where N=B(X). Since

    N=B(X)=supυX{supϑ|Bυ(ϑ)|}M,

    we have

    ωNωM<1.

    Thus all the assumptions of Theorem 2.6 hold. Hence, υ=AυBυ has a solution in X. So, the hybrid problem 1.1 has a solution on .

    In view of Lemma 2.8, we have

    υ(ϑ)=g11(ϑ,υ(ϑ))(Iϱ,Ψa+g2(ϑ,υ(ϑ))μ(ϑ,υ(ϑ))Iϱ,Ψa+g2(b,υ(b))+ν(ϑ,υ(ϑ))Iϱ1,Ψa+g2(b,υ(b))),

    where

    μ(ϑ,υ(ϑ)):=g11(ϑ,υ(ϑ))ρ1ρ2(Ψ(ϑ)Ψ(a))ρ3,
    ν(ϑ,υ(ϑ)):=g11(ϑ,υ(ϑ))η1(Ψ(b)Ψ(ϑ))+η2(Ψ(ϑ)Ψ(a))ρ3.
    ρ1:=g1(a,υ(a))(g1(a,υ(a))Ψ(b)g1(b,υ(b))Ψ(a)),ρ2:=(g1(a,υ(a))g1(b,υ(b))g1(b,υ(b))g1(a,υ(a))),
    ρ3:=(g1(b,υ(b))g1(a,υ(a)))(g1(b,υ(b))Ψ(a)g1(a,υ(a))Ψ(b))+(g1(a,υ(a))g1(b,υ(b))g1(a,υ(a))g1(b,υ(b)))(Ψ(b)Ψ(a)),
    η1=[g1(a,υ(a))]2Ψ(b), η2=g1(a,υ(a))g1(b,υ(b))Ψ(b),

    To simplify, we will use the following notations:

    Ω:=((1+μ)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)+ν(Ψ(b)Ψ(a))ϱ1Γ(ϱ))Mg2,

    and

    μ=max(ϑ,υ)×R|μ(ϑ,υ(ϑ))|, and ν=max(ϑ,υ)×R|ν(ϑ,υ(ϑ))|.

    Theorem 2.10. Assume that (H1)–(H3) hold. Furthermore, if

    ωΩ<1, (2.14)

    then the hybrid problem (1.2) has a least one solution defined on .

    Proof. Define

    R1g0Ω1ωΩ. (2.15)

    In the light of (2.14), R1>0. Define a subset X of the Banach algebra C by

    X={υC:υR1}.

    Clearly, X is a closed, convex and bounded subset of C. Consider the operators A1:CC and B1:XC defined by

    (A1υ)(ϑ)=g11(ϑ,υ(ϑ)), ϑ,

    and

    (B1υ)(ϑ)=Iϱ,Ψa+g2(ϑ,υ(ϑ))μ(ϑ,υ(ϑ))Iϱ,Ψa+g2(b,υ(b))+ν(ϑ,υ(ϑ))Iϱ1,Ψa+g2(b,υ(b)), ϑ,

    where υ=A1υB1υ, υC.

    Now, we prove that A1 and B1 fulfills assumptions of Theorem 2.6. The proof will be given in forthcoming steps.

    Step I:A1 is lipschitzian on C with Lipschitz constants ω.

    Let υ,υC and ϑ. Then, by using (H2), we have

    |A1υ(ϑ)A1υ(ϑ)|=|g11(ϑ,υ(ϑ))g11(ϑ,υ(ϑ))|ω(ϑ)(|υ(ϑ)υ(ϑ)|).

    Thus

    Aυ Aυ ωυ υ .

    That is, A1 is a Lipschitzian with Lipschitz constant ω.

    Step II: B1 is completely continuous on X. Firstly, B1 is continuous on C, due to the continuity of g2,g1,g11 implies that μ and ν are continuous and hence B1 is continuous too. Next, we shall prove that B1(X) is uniformly bounded in X. For any υX, we have

    |B1υ(ϑ)|=|Iϱ,Ψa+g2(ϑ,υ(ϑ))μ(ϑ,υ(ϑ))Iϱ,Ψa+g2(b,υ(b))+ν(ϑ,υ(ϑ))Iϱ1,Ψa+g2(b,υ(b))|ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+|μ(ϑ,υ(ϑ))|basϱΨ(b,ς)|g2(ς,υ(ς))|dς+|ν(ϑ,υ(ϑ))|basϱ1Ψ(b,ς)|g2(ς,υ(ς))|dςMg2ϑasϱΨ(ϑ,ς)dς+μMg2basϱΨ(b,ς)dς+νMg2basϱ1Ψ(b,ς)dς((1+μ)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)+ν(Ψ(b)Ψ(a))ϱ1Γ(ϱ))Mg2,

    which implies

    B1υ((1+μ)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)+ν(Ψ(b)Ψ(a))ϱ1Γ(ϱ))Mg2=Ω.

    This shows that {B1υ:υX} is uniformly bounded set. Now, we show that B1(X) is an equicontinuous set in X, let ϑ1,ϑ2(ϑ1<ϑ2). Then for any υX and by (H3), we get

    |B1(υ)(ϑ2)B1(υ)(ϑ1)||Iϱ,Ψ0+g2(ϑ2,υ(ϑ2))Iϱ,Ψ0+g2(ϑ1,υ(ϑ1))|+|μ(ϑ2,υ(ϑ2))μ(ϑ1,υ(ϑ1))||Iϱ,Ψ0+g2(b,υ(b))|+|ν(ϑ2,υ(ϑ2))ν(ϑ1,υ(ϑ1))||Iϱ1,Ψ0+g2(b,υ(b))||ϑ2asϱΨ(ϑ2,ς)g2(ς,υ(ς))dςϑ1asϱΨ(ϑ1,ς)g2(ς,υ(ς))dς|+|μ(ϑ2,υ(ϑ2))μ(ϑ1,υ(ϑ1))||basϱΨ(b,ς)g2(ς,υ(ς))dς|+|ν(ϑ2,υ(ϑ2))ν(ϑ1,υ(ϑ1))||basϱ1Ψ(b,ς)g2(ς,υ(ς))dς|ϑ1a(sϱΨ(ϑ2,ς)sϱΨ(ϑ1,ς))|g2(ς,υ(ς))|dς+ϑ2ϑ1sϱΨ(ϑ2,ς)|g2(ς,υ(ς))|dς+|μ(ϑ2,υ(ϑ2))μ(ϑ1,υ(ϑ1))|basϱΨ(b,ς)|g2(ς,υ(ς))|dς+|ν(ϑ2,υ(ϑ2))ν(ϑ1,υ(ϑ1))|basϱ1Ψ(b,ς)|g2(ς,υ(ς))|dςMg2Γ(ϱ+1)[(Ψ(ϑ2)Ψ(a))ϱ(Ψ(ϑ2)Ψ(a))ϱ]+|μ(ϑ2,υ(ϑ2))μ(ϑ1,υ(ϑ1))|Mg2Γ(ϱ+1)(Ψ(b)Ψ(a))ϱ+|ν(ϑ2,υ(ϑ2))ν(ϑ1,υ(ϑ1))|Mg2Γ(ϱ)(Ψ(b)Ψ(a))ϱ10 as ϑ2ϑ1.

    As a result of the Ascoli-Arzela theorem, B1 is a completely continuous operator on X.

    Step III: We prove the third condition (c) of Theorem 2.6 holds. Let υC and υX such that υ=A1υB1υ. Then

    |υ(ϑ)||A1υ(ϑ)||B1υ(ϑ)||g11(ϑ,υ(ϑ))|(ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+|μ(ϑ,υ(ϑ))|basϱΨ(b,ς)|g2(ς,υ(ς))|dς+|ν(ϑ,υ(ϑ))|basϱ1Ψ(b,ς)|g2(ς,υ(ς))|dς)(|g11(ϑ,υ(ϑ))g11(ϑ,0)|+|g11(ϑ,0)|)(ϑasϱΨ(ϑ,ς)|g2(ς,υ(ς))|dς+μbasϱΨ(b,ς)|g2(ς,υ(ς))|dς+νbasϱ1Ψ(b,ς)|g2(ς,υ(ς))|dς)(ω|υ(ϑ)|+g10)((1+μ)(Ψ(b)Ψ(a))ϱΓ(ϱ+1)+ν(Ψ(b)Ψ(a))ϱ1Γ(ϱ))Mg2=(ω|υ(ϑ)|+g10)Ω,

    which gives

    υΩg101ΩωR1.

    Thus, υR1 and so the hypothesis (c) of Theorem 2.6 is satisfied.

    Step IV: Assumption (d) of Theorem 2.6 holds.

    To this end, we show that ωN<1, where N=B1(X). Since

    N=B1(X)=supυX{supϑ|B1υ(ϑ)|}Ω,

    we have

    ωNωΩ<1.

    Thus all the assumptions of Theorem 2.6 hold. Hence, υ=A1υB1υ has a solution in X. So, the hybrid problem 1.2 has a solution on .

    In this section, in order to illustrate our results, we consider two examples.

    Example 3.1 Consider the following nonlocal hybrid boundary value problem:

    {CDϱ,Ψa+(υ(ϑ)(ϑ210(12(υ(ϑ))+ϑ))1)=e(2ϑ)9+ϑ(sinυ(ϑ)),ϱ(0,1)υ(0)=υ(1), (3.1)

    From the system (3.1), and we choose Ψ(ϑ)=ϑ, a=0, b=1, ϱ=4/5, g11(ϑ,υ(ϑ))=(ϑ210(12(υ(ϑ))+ϑ))1,g2(ϑ,υ(ϑ))=e(2ϑ)9+ϑ(sinυ(ϑ)). Clearly, g2,g11 are continuous. Moreover

    |g11(ϑ,υ1)g11(ϑ,υ2)|110|υ1υ2|,

    and

    |g2(ϑ,υ(ϑ))|13,

    with ω=110, Mg2=110 and g0=supϑ|g1(ϑ,0)|=110. Using these values, we get Mω0.35<1. As all the conditions of Theorem 2.9 are satisfied, problem 3.1 has at least one solution on .

    Example 3.2. Consider the following nonlocal hybrid boundary value problem:

    {CDϱ,Ψa+(υ(ϑ)(ϑ5(13(υ(ϑ))+ϑ))1)=cos2(2πϑ)5ϑυ(ϑ),ϱ(1,2),υ(1)=υ(2),υ(1)=υ(2), (3.2)

    From the system (3.2), and we choose Ψ(ϑ)=ϑ, a=0, b=1, ϱ=8/5, g(ϑ,υ(ϑ))=(ϑ5(13(υ(ϑ))+ϑ))1,g2(ϑ,υ(ϑ))=cos2(2πϑ)5ϑυ(ϑ). Clearly, g2,g11 are continuous. Moreover

    |g11(ϑ,υ1)g11(ϑ,υ2)|15|υ1υ2|,

    and

    |g2(ϑ,υ(ϑ))|14,

    with ω=15, Mg2=14 and g0=supϑ|g1(ϑ,0)|=15. Using these values, we get Ωω<1. As all the conditions of Theorem 2.10 are satisfied, problem 3.2 has at least one solution on .

    It is important that we examine the fractional systems of the hybrid with generalized derivatives since these derivatives cover many systems in the literature and they contain a kernel with different values that generate many special cases.

    In this research work, we have investigated the sufficient conditions to the existence of solutions to two new types of boundary value problems of nonlinear hybrid fractional differential equations involving generalized fractional derivatives known as Ψ-Caputo operators. In order to achieve the objectives, we applied Dhage's fixed point theorem for the sum of three operators. Two examples are provided to confirm the feasibility of the obtained results.

    Moreover, we have formulated illustrative examples for this type of hybrid fractional systems to support our main results from a numerical point of view.

    T. Abdeljawad would like to thank Prince Sultan University for the support through the research lab TAS.

    The authors declare that there is no conflict of interests regarding the publication of this paper.



    [1] A. A. Kilbas, H. M. Shrivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. doi: 10.1016/s0304-0208(06)x8001-5.
    [2] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, 2010. doi: 10.1142/p614.
    [3] J. Hadamdard, Essai sur l'etude des fonctions données par leur développement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
    [4] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific, 35 (2000), 87–130. doi: 10.1142/9789812817747_0008.
    [5] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142
    [6] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z
    [7] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. doi: 10.1016/j.amc.2011.03.062
    [8] M. Caputo, M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
    [9] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [10] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
    [11] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006
    [12] J. V. C. Sousa, C. E. Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [13] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn-S., 13 (2020), 709. doi: 10.3934/dcdss.2020039. doi: 10.3934/dcdss.2020039
    [14] M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46. doi: 10.48185/jmam.v1i1.2. doi: 10.48185/jmam.v1i1.2
    [15] H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations with Ψ-Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes, 20 (2020), 215–229.
    [16] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of Ψ -Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. doi: 10.1016/j.rinam.2021.100142. doi: 10.1016/j.rinam.2021.100142
    [17] N. Adjimi, A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for nonlinear neutral generalized Caputo fractional differential equations, J. Pseudo-Differ. Oper., 12 (2021), 25. doi: 10.1007/s11868-021-00400-3. doi: 10.1007/s11868-021-00400-3
    [18] H. A. Wahash, M. S. Abdo, S. K. Panchal, Existence and stability of a nonlinear fractional differential equation involving a Ψ-Caputo operator, Adv. Theor. Nonlinear Anal. Appl., 4 (2020), 266–278. doi: 10.31197/atnaa.664534. doi: 10.31197/atnaa.664534
    [19] Z. Baitiche, C. Derbazi, M. M. Matar, Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the Ψ-Caputo sense, Appl. Anal., 2021, 1–16. doi: 10.1080/00036811.2021.1873300.
    [20] Y. Zhao, On the existence for a class of periodic boundary value problems of nonlinear fractional hybrid differential equations, Appl. Math. Lett., 121 (2021), 107368. doi: 10.1016/j.aml.2021.107368. doi: 10.1016/j.aml.2021.107368
    [21] Y. Zhao, S. Suna, Z. Hana, M. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Appl. Math. Comput., 217 (2011), 6950–6958. doi: 10.1016/j.amc.2011.01.103. doi: 10.1016/j.amc.2011.01.103
    [22] Y. Zhao, X. Hou, Y. Sun, Z. Bai, Solvability for some class of multi-order nonlinear fractional systems, Adv. Differ. Equ., 2019 (2019), 23. doi: 10.1186/s13662-019-1970-2. doi: 10.1186/s13662-019-1970-2
    [23] M. Almalahi, S. Panchal, Existence and δ-Approximate solution of implicit fractional pantograph equations in the frame of Hilfer-Katugampola operator, J. Fract. Calc. Nonlinear Sys., 2 (2021), 1–17. doi: 10.48185/jfcns.v2i1.59. doi: 10.48185/jfcns.v2i1.59
    [24] Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312–1324. doi: 10.1016/j.camwa.2011.03.041. doi: 10.1016/j.camwa.2011.03.041
    [25] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal- Hybri., 4 (2010), 414–424. doi: 10.1016/j.nahs.2009.10.005. doi: 10.1016/j.nahs.2009.10.005
    [26] B. Dhage, N. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44 (2013), 171–186. doi: 10.5556/j.tkjm.44.2013.1086. doi: 10.5556/j.tkjm.44.2013.1086
    [27] M. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 3 (2014), 389386. doi: 10.1155/2014/389386. doi: 10.1155/2014/389386
    [28] M. S. Abdo, T. Abdeljawad, K. Shah, S. M. Ali, On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative, Math. Method Appl. Sci., 44 (2021), 6581–6600. doi: 10.1002/mma.7210. doi: 10.1002/mma.7210
    [29] G. Nazir, K. Shah, T. Abdeljawad, H. Khalil, R. A. Khan, Using a prior estimate method to investigate sequential hybrid fractional differential equations, Fractals, 28 (2020), 2040004. doi: 10.1142/S0218348X20400046. doi: 10.1142/S0218348X20400046
    [30] A. Ali, K. Shah, R. A. Khan, Existence of solution to a coupled system of hybrid fractional differential equations, Bull. Math. Anal. Appl., 9 (2017), 9–18.
    [31] M. B. Zada, K. Shah, R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math., 4 (2018), 102. doi: 10.1007/s40819-018-0534-6. doi: 10.1007/s40819-018-0534-6
    [32] B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631–1640. doi:10.1016/S0252-9602(16)30095-9. doi: 10.1016/S0252-9602(16)30095-9
    [33] S. Etemad, S. Rezapour, M. E. Samei, On fractional hybrid and non-hybrid multi-term integro-differential inclusions with three-point integral hybrid boundary conditions, Adv. Differ. Equ., 2020 (2020), 161. doi: 10.1186/s13662-020-02627-8. doi: 10.1186/s13662-020-02627-8
    [34] S. B. Chikh, A. Amara, S. Etemad, S. Rezapour, On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions, Adv. Differ. Equ., 2020 (2020), 680. doi: 10.1186/s13662-020-03139-1. doi: 10.1186/s13662-020-03139-1
    [35] A. Amara, S. Etemad, S. Rezapour, Approximate solutions for a fractional hybrid initial value problem via the Caputo conformable derivative, Adv. Differ. Equ., 2020 (2020), 608. doi: 10.1186/s13662-020-03072-3. doi: 10.1186/s13662-020-03072-3
    [36] N. Mahmudov, M. M. Matar, Existence of mild solution for hybrid differential equations with arbitrary fractional order, TWMS J. Pure Appl. Math., 8 (2017), 160–169.
    [37] M. M. Matar, Existence of solution for fractional neutral hybrid differential equations with finite delay, Rocky Mt. J. Math., 50 (2020), 2141–2148. doi: 10.1216/rmj.2020.50.2141. doi: 10.1216/rmj.2020.50.2141
    [38] M. M. Matar, Qualitative properties of solution for hybrid nonlinear fractional differential equations, Afr. Mat., 30 (2019), 1169–1179. doi: 10.1007/s13370-019-00710-2. doi: 10.1007/s13370-019-00710-2
    [39] M. M. Matar, Approximate controllability of fractional nonlinear hybrid differential systems via resolvent operators, J. Math., 2019 (2019), 7 pages. doi: 10.1155/2019/8603878. doi: 10.1155/2019/8603878
    [40] B. C. Dhage, A fixed point theorem in Banach algebras involv-ing three operators with applications, Kyungpook Math. J., 44 (2004), 145–155.
    [41] B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett., 18 (2005), 273–280. doi: 10.1016/j.aml.2003.10.014. doi: 10.1016/j.aml.2003.10.014
  • This article has been cited by:

    1. Abdellatif Boutiara, Hanan A. Wahash, Heba Y. Zahran, Emad E. Mahmoud, Abdel-Haleem Abdel-Aty, El Sayed Yousef, Yusuf Gurefe, On Solutions of Hybrid–Sturm-Liouville–Langevin Equations with Generalized Versions of Caputo Fractional Derivatives, 2022, 2022, 2314-8888, 1, 10.1155/2022/1561375
    2. Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad, On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense, 2023, 8, 2473-6988, 2062, 10.3934/math.2023106
    3. Jikai Yang, Hongli Li, Long Zhang, Necessary and Sufficient Conditions for Existence and Uniqueness of Solutions to Nabla Fractional Systems, 2022, 6, 2504-3110, 723, 10.3390/fractalfract6120723
    4. Omar Kahouli, Assaad Jmal, Omar Naifar, Abdelhameed M. Nagy, Abdellatif Ben Makhlouf, New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems, 2022, 10, 2227-7390, 1814, 10.3390/math10111814
    5. M. Vellappandi, Venkatesan Govindaraj, José Vanterler da C. Sousa, Fractional optimal reachability problems with ψ ‐Hilfer fractional derivative , 2022, 45, 0170-4214, 6255, 10.1002/mma.8168
    6. Abdelatif Boutiara, Mohammed S. Abdo, Mohammed A. Almalahi, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad, Study of Sturm-Liouville boundary value problems with $ {p} $ -Laplacian by using generalized form of fractional order derivative, 2022, 7, 2473-6988, 18360, 10.3934/math.20221011
    7. Abdallah Djaout, Maamar Benbachir, Mustapha Lakrib, Mohammed M. Matar, Aziz Khan, Thabet Abdeljawad, Solvability and stability analysis of a coupled system involving generalized fractional derivatives, 2023, 8, 2473-6988, 7817, 10.3934/math.2023393
    8. V. Vijayakumar, Muslim Malik, Anurag Shukla, Results on the Approximate Controllability of Hilfer Type fractional Semilinear Control Systems, 2023, 22, 1575-5460, 10.1007/s12346-023-00759-2
    9. Teeranush Suebcharoen, Watchareepan Atiponrat, Khuanchanok Chaichana, Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions, 2023, 8, 2473-6988, 7394, 10.3934/math.2023372
    10. Anwar Shah, Rahmat Ali Khan, Hasib Khan, A fractional‐order hybrid system of differential equations: Existence theory and numerical solutions, 2022, 45, 0170-4214, 4024, 10.1002/mma.8029
    11. Abdelkrim Salim, Jehad Alzabut, Weerawat Sudsutad, Chatthai Thaiprayoon, On Impulsive Implicit ψ-Caputo Hybrid Fractional Differential Equations with Retardation and Anticipation, 2022, 10, 2227-7390, 4821, 10.3390/math10244821
    12. S. Sivasankar, R. Udhayakumar, Discussion on Existence of Mild Solutions for Hilfer Fractional Neutral Stochastic Evolution Equations Via Almost Sectorial Operators with Delay, 2023, 22, 1575-5460, 10.1007/s12346-023-00773-4
    13. Zahra Eidinejad, Reza Saadati, Javad Vahidi, Chenkuan Li, Tofigh Allahviranloo, The existence of a unique solution and stability results with numerical solutions for the fractional hybrid integro-differential equations with Dirichlet boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01928-1
    14. J. Vanterler da C. Sousa, Karla B. Lima, Leandro S. Tavares, Existence of Solutions for a Singular Double Phase Problem Involving a $$\psi $$-Hilfer Fractional Operator Via Nehari Manifold, 2023, 22, 1575-5460, 10.1007/s12346-023-00794-z
    15. K. Balachandran, M. Matar, N. Annapoorani, D. Prabu, Hadamard functional fractional integrals and derivatives and fractional differential equations, 2024, 38, 0354-5180, 779, 10.2298/FIL2403779B
    16. Qun Dai, Yunying Zhang, Stability of Nonlinear Implicit Differential Equations with Caputo–Katugampola Fractional Derivative, 2023, 11, 2227-7390, 3082, 10.3390/math11143082
    17. Abdelatif Boutiara, Sotiris K. Ntouyas, Taghreed A. Assiri, Jessada Tariboon, Emad E. Mahmoud, On the Cauchy Problem for Nonlinear Fractional Systems with Lipschitzian Matrices Under the Generalized Metric Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01127-4
    18. Shiferaw Geremew Kebede, Assia Guezane Lakoud, Analysis of mathematical model involving nonlinear systems of Caputo–Fabrizio fractional differential equation, 2023, 2023, 1687-2770, 10.1186/s13661-023-01730-5
    19. Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami, Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system, 2024, 9, 2473-6988, 16203, 10.3934/math.2024784
    20. Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Piecewise implicit coupled system under ABC fractional differential equations with variable order, 2024, 9, 2473-6988, 15303, 10.3934/math.2024743
    21. Mohammad Alshammari, Saleh Alshammari, Mohammed S. Abdo, Kolade M. Owolabi, Existence Theorems for Hybrid Fractional Differential Equations with ψ -Weighted Caputo–Fabrizio Derivatives, 2023, 2023, 2314-4785, 1, 10.1155/2023/8843470
    22. Mohammed A. Almalahi, Khaled Aldowah, Faez Alqarni, Manel Hleili, Kamal Shah, Fathea M. O. Birkea, On modified Mittag–Leffler coupled hybrid fractional system constrained by Dhage hybrid fixed point in Banach algebra, 2024, 14, 2045-2322, 10.1038/s41598-024-81568-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2713) PDF downloads(120) Cited by(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog