Research article Special Issues

A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations

  • Received: 31 July 2020 Accepted: 06 September 2020 Published: 11 September 2020
  • MSC : 34A08, 26A33

  • In this paper, we discuss the existence of solutions for a nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem due to Dhage. Finally, we give an example to illustrate our main result.

    Citation: Dehong Ji, Weigao Ge. A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations[J]. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459

    Related Papers:

  • In this paper, we discuss the existence of solutions for a nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem due to Dhage. Finally, we give an example to illustrate our main result.


    加载中


    [1] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equation, Nonlinear Anal. Hybrid Syst., 4 (2010), 414-424. doi: 10.1016/j.nahs.2009.10.005
    [2] Y. Zhao, S. Sun, Z. Han, et al. Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312-1324. doi: 10.1016/j.camwa.2011.03.041
    [3] S. Sun, Y. Zhao, Z. Han, et al. The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4961-4967. doi: 10.1016/j.cnsns.2012.06.001
    [4] B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809.
    [5] B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclusions, Topol. Methods Nonlinar Anal., 44 (2014), 229-238.
    [6] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, Sci. World J., 2014 (2014), 426438.
    [7] K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ., 2015 (2015), 183.
    [8] B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631-1640. doi: 10.1016/S0252-9602(16)30095-9
    [9] Z. Ullah, A. Ali, R. A. Khan, et al. Existence results to a class of hybrid fractional differential equations, Matriks Sains Mat. (MSMK), 1 (2018), 13-17.
    [10] M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fractional hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163.
    [11] Z. Baitiche, K. Guerbati, M. Benchohra, et al. Boundary value problems for Hybrid Caputo fractional differential equations, Mathematics, 7 (2019), 1-11.
    [12] K. Zhang, J. Wang, W. Ma, Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Funct. Space., 2018 (2018), 1-10.
    [13] J. Jiang, D. O'Regan, J. Xu, et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
    [14] J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2015), 85-90. doi: 10.1016/j.aml.2014.08.015
    [15] K. Zhang, Z. Fu, Solutions for a class of Hadamard fractional boundary value problems with signchanging nonlinearity, J. Funct. Space., 2019 (2019), 1-7.
    [16] S. NageswaraRao, M. Singh, M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2020 (2020), 1-25. doi: 10.1186/s13661-019-01311-5
    [17] Z. Baitiche, C. Derbazi, On the solvability of a fractional hybrid differential equation of hadamard type with dirichlet boundary conditions in Banach algebras, Commun. Optim. Theory, 2020 (2020), 9.
    [18] M. Jamil, R. A. Khan, K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Bound. Value Probl., 2019 (2019), 77.
    [19] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006
    [20] R. Almeida, A. B. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the ψ-Caputo derivative and their applications, Math. Methods Appl. Sci., 2019. Available from: http://doi.org/10.1002/mma.5678.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3185) PDF downloads(157) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog