Research article

Fuzzy normed spaces and stability of a generalized quadratic functional equation

  • Received: 10 June 2020 Accepted: 02 September 2020 Published: 10 September 2020
  • MSC : 46S40, 39B52, 39B82, 26E50, 46S50

  • In this paper, we acquire the general solution of the generalized quadratic functional equation $ \begin{aligned} \sum\limits_{1 \leq a \lt b \lt c \leq m}\varphi\left(r_{a}+r_{b}+r_{c}\right)& = (m-2)\sum\limits_{1\leq a \lt b\leq m}\varphi\left(r_{a}+r_{b}\right) \\ &\quad-\left(\frac{m^{2}-3m+2}{2}\right)\nonumber \sum\limits_{a = 1}^{m}\frac{\varphi\left(r_{a}\right)+\varphi\left(-r_{a}\right)}{2} \end{aligned} $ where $m\geqslant 3$ is an integer. We also investigate Hyers-Ulam stability results by means of using alternative fixed point theorem for this generalized quadratic functional equation.

    Citation: Choonkil Park, K. Tamilvanan, Batool Noori, M. B. Moghimi, Abbas Najati. Fuzzy normed spaces and stability of a generalized quadratic functional equation[J]. AIMS Mathematics, 2020, 5(6): 7161-7174. doi: 10.3934/math.2020458

    Related Papers:

  • In this paper, we acquire the general solution of the generalized quadratic functional equation $ \begin{aligned} \sum\limits_{1 \leq a \lt b \lt c \leq m}\varphi\left(r_{a}+r_{b}+r_{c}\right)& = (m-2)\sum\limits_{1\leq a \lt b\leq m}\varphi\left(r_{a}+r_{b}\right) \\ &\quad-\left(\frac{m^{2}-3m+2}{2}\right)\nonumber \sum\limits_{a = 1}^{m}\frac{\varphi\left(r_{a}\right)+\varphi\left(-r_{a}\right)}{2} \end{aligned} $ where $m\geqslant 3$ is an integer. We also investigate Hyers-Ulam stability results by means of using alternative fixed point theorem for this generalized quadratic functional equation.


    加载中


    [1] D. Amir, Characterizations of Inner Product spaces, Birkhäuser, Basel, 1986.
    [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
    [3] T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687-706.
    [4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59-64.
    [5] J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. doi: 10.1090/S0002-9904-1968-11933-0
    [6] M. E. Gordji, A. Najati, Approximately $J^*$-homomorphisms: A fixed point approach, J. Geom. Phys., 60 (2010), 809-814.
    [7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
    [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
    [9] P. Jordan, J. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719-723.
    [10] S. M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (2001), 645-656.
    [11] P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
    [12] D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
    [13] A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Set. Syst., 159 (2008), 720-729. doi: 10.1016/j.fss.2007.09.016
    [14] A. Najati, Fuzzy stability of a generalized quadratic functional equation, Commun. Korean Math. Soc., 25 (2010), 405-417.
    [15] A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
    [16] A. Najati, C. Park, Fixed points and stability of a generalized quadratic functional equation, J. Inequal. Appl., 2009 (2009), 193035.
    [17] A. Najati, T. M. Rassias, Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Anal., 72 (2010), 1755-1767.
    [18] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Set. Syst., 160 (2009), 1632-1642.
    [19] C. Park, J. R. Lee, X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fix. Point Theory Appl., 21 (2019), 18.
    [20] V. Radu, The fixed point alternative and the stability of functional equations, Sem. Fix. Point Theory, 4 (2003), 91-96.
    [21] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
    [22] T. M. Rassias, New characterization of inner product spaces, Bull. Sci. Math., 108 (1984), 95-99.
    [23] S. Pinelas, V. Govindan, K. Tamilvanan, Stability of a quartic functional equation, J. Fix. Point Theory Appl., 20 (2018), 148.
    [24] S. Pinelas, V. Govindan, K. Tamilvanan, Solution and stability of an n-dimensional functional equation, Analysis (Berlin), 39 (2019), 107-115.
    [25] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
    [26] S. M. Ulam, A collection of the mathematical problems, Interscience Publ., New York, 1960.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3339) PDF downloads(119) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog