Citation: Choonkil Park, K. Tamilvanan, Batool Noori, M. B. Moghimi, Abbas Najati. Fuzzy normed spaces and stability of a generalized quadratic functional equation[J]. AIMS Mathematics, 2020, 5(6): 7161-7174. doi: 10.3934/math.2020458
[1] | D. Amir, Characterizations of Inner Product spaces, Birkhäuser, Basel, 1986. |
[2] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. |
[3] | T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687-706. |
[4] | S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59-64. |
[5] | J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. doi: 10.1090/S0002-9904-1968-11933-0 |
[6] | M. E. Gordji, A. Najati, Approximately $J^*$-homomorphisms: A fixed point approach, J. Geom. Phys., 60 (2010), 809-814. |
[7] | P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. |
[8] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. |
[9] | P. Jordan, J. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719-723. |
[10] | S. M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (2001), 645-656. |
[11] | P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. |
[12] | D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. |
[13] | A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Set. Syst., 159 (2008), 720-729. doi: 10.1016/j.fss.2007.09.016 |
[14] | A. Najati, Fuzzy stability of a generalized quadratic functional equation, Commun. Korean Math. Soc., 25 (2010), 405-417. |
[15] | A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415. |
[16] | A. Najati, C. Park, Fixed points and stability of a generalized quadratic functional equation, J. Inequal. Appl., 2009 (2009), 193035. |
[17] | A. Najati, T. M. Rassias, Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Anal., 72 (2010), 1755-1767. |
[18] | C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Set. Syst., 160 (2009), 1632-1642. |
[19] | C. Park, J. R. Lee, X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fix. Point Theory Appl., 21 (2019), 18. |
[20] | V. Radu, The fixed point alternative and the stability of functional equations, Sem. Fix. Point Theory, 4 (2003), 91-96. |
[21] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. |
[22] | T. M. Rassias, New characterization of inner product spaces, Bull. Sci. Math., 108 (1984), 95-99. |
[23] | S. Pinelas, V. Govindan, K. Tamilvanan, Stability of a quartic functional equation, J. Fix. Point Theory Appl., 20 (2018), 148. |
[24] | S. Pinelas, V. Govindan, K. Tamilvanan, Solution and stability of an n-dimensional functional equation, Analysis (Berlin), 39 (2019), 107-115. |
[25] | F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. |
[26] | S. M. Ulam, A collection of the mathematical problems, Interscience Publ., New York, 1960. |