Citation: Shang Wu, Pengfei Xu, Jianhua Huang. Invariant measure of stochastic damped Ostrovsky equation driven by pure jump noise[J]. AIMS Mathematics, 2020, 5(6): 7145-7160. doi: 10.3934/math.2020457
[1] | A. Bouard, E. Hausenblasb, The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252. doi: 10.1016/j.jmaa.2019.02.036 |
[2] | A. Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251. doi: 10.1006/jfan.1997.3184 |
[3] | A. Bouard, A. Debussche, Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558. doi: 10.1006/jfan.1999.3484 |
[4] | Y. Chen, Random attractor of the stochastic damped forced Ostrovsky equation, J. Math. Anal. Appl., 404 (2013), 283-299. |
[5] | G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge: Cambridge University Press, 1996. |
[6] | Z. Dong, J. Liang, Martingale solutions and Markov selection of stochastic 3D-Navier-Stokes equations with jump, J. Diff. Eqns, 250 (2011), 2737-2778. doi: 10.1016/j.jde.2011.01.018 |
[7] | Z. Dong, Y. Xie, Ergodicity of stochastic 2D Navier-stokes equations with Lévy noise, J. Diff. Eqns, 251 (2011), 196-222. doi: 10.1016/j.jde.2011.03.015 |
[8] | Z. Dong, T. Xu, T. Zhang, Invariant measures for stochastic evolution equations of pure jump type. Stoch. Proc. Appl., 119 (2009), 410-427. |
[9] | I. Ekren, I. Kukavica, M. Ziane, Existence of invariant measure for stochastic damped Schrödinger equation, Stoch PDE: Anal. Comp., 5 (2017), 343-367. doi: 10.1007/s40072-016-0090-1 |
[10] | I. Ekren, I. Kukavica, M. Ziane, Existence of invariant measure for stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254. doi: 10.1512/iumj.2018.67.7365 |
[11] | P. Isaza, J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Diff. Eqns., 230 (2006), 661-681. doi: 10.1016/j.jde.2006.04.007 |
[12] | P. Isaza, J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal. TMA., 67 (2007), 1482-1503. doi: 10.1016/j.na.2006.07.031 |
[13] | P. Isazaa, J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal. TMA., 70 (2009), 2306-2316. doi: 10.1016/j.na.2008.03.010 |
[14] | Y. Li, W. Yan, The Cauchy problem for higher-order KdV equations forced by white noise, J. Henan Normal University, 45 (2017), 1-8. |
[15] | F. Linares, A. Milanés, Local and global well-posedness for the Ostrovsky equation, J. Diff. Eqns., 222 (2006), 325-340. doi: 10.1016/j.jde.2005.07.023 |
[16] | Y. Prokhorov, Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl., 2 (1956), 157-214. |
[17] | L. Ostrovsky, Nonlinear internal waves in a rotating ocean Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. |
[18] | S. Peszat, J. Zabczyk, Stochatsic partial differential equation with Levy noise Evolution Equation Approach, Cambridge: Cambridge University Press, 2000. |
[19] | S. Wu, P. Xu, J. Huang, et al. Ergodicity of stochastic damped Ostrovsky equation driven by white noise, Discrete Cont. Dyn. B, doi:10.3934/dcdsb.2020175. |
[20] | T. Yaguchi, T. Matsuo, M. Sugihara, Conservative numerical schemes for the Ostrovsky equation. J. Comput. Appl. Math., 234 (2010), 1036-1048. |
[21] | W. Yan, M. Yang, J. Huang, et al. The Cauchy problem for the Ostrovsky equation with positive dispersion, Nonlinear Differential Appl., 25 (2018), 22-37. doi: 10.1007/s00030-018-0514-x |
[22] | W. Yan, M. Yang, J. Duan, White noise driven Ostrovsky equation, J. Diff. Eqns., 267 (2019), 5701-5735. doi: 10.1016/j.jde.2019.06.003 |