Research article

Invariant measure of stochastic damped Ostrovsky equation driven by pure jump noise

  • Received: 22 July 2020 Accepted: 30 August 2020 Published: 10 September 2020
  • MSC : 60H15; 37A25

  • This paper is devoted to the stochastic damped Ostrovsky equation driven by pure jump noise. The uniformly bounded of solutions in $H^1(\mathbb{R})$ and $L^2(\mathbb{R})$ space are established respectively, which are the key tools to obtain the existence of invariant measure. By applying the convergence in measure in Hilbert space, we prove that the invariant measure is unique if the initial value is non-random. Some numerical simulation are provided to support the theoretical results.

    Citation: Shang Wu, Pengfei Xu, Jianhua Huang. Invariant measure of stochastic damped Ostrovsky equation driven by pure jump noise[J]. AIMS Mathematics, 2020, 5(6): 7145-7160. doi: 10.3934/math.2020457

    Related Papers:

  • This paper is devoted to the stochastic damped Ostrovsky equation driven by pure jump noise. The uniformly bounded of solutions in $H^1(\mathbb{R})$ and $L^2(\mathbb{R})$ space are established respectively, which are the key tools to obtain the existence of invariant measure. By applying the convergence in measure in Hilbert space, we prove that the invariant measure is unique if the initial value is non-random. Some numerical simulation are provided to support the theoretical results.


    加载中


    [1] A. Bouard, E. Hausenblasb, The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252. doi: 10.1016/j.jmaa.2019.02.036
    [2] A. Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251. doi: 10.1006/jfan.1997.3184
    [3] A. Bouard, A. Debussche, Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558. doi: 10.1006/jfan.1999.3484
    [4] Y. Chen, Random attractor of the stochastic damped forced Ostrovsky equation, J. Math. Anal. Appl., 404 (2013), 283-299.
    [5] G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge: Cambridge University Press, 1996.
    [6] Z. Dong, J. Liang, Martingale solutions and Markov selection of stochastic 3D-Navier-Stokes equations with jump, J. Diff. Eqns, 250 (2011), 2737-2778. doi: 10.1016/j.jde.2011.01.018
    [7] Z. Dong, Y. Xie, Ergodicity of stochastic 2D Navier-stokes equations with Lévy noise, J. Diff. Eqns, 251 (2011), 196-222. doi: 10.1016/j.jde.2011.03.015
    [8] Z. Dong, T. Xu, T. Zhang, Invariant measures for stochastic evolution equations of pure jump type. Stoch. Proc. Appl., 119 (2009), 410-427.
    [9] I. Ekren, I. Kukavica, M. Ziane, Existence of invariant measure for stochastic damped Schrödinger equation, Stoch PDE: Anal. Comp., 5 (2017), 343-367. doi: 10.1007/s40072-016-0090-1
    [10] I. Ekren, I. Kukavica, M. Ziane, Existence of invariant measure for stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254. doi: 10.1512/iumj.2018.67.7365
    [11] P. Isaza, J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Diff. Eqns., 230 (2006), 661-681. doi: 10.1016/j.jde.2006.04.007
    [12] P. Isaza, J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal. TMA., 67 (2007), 1482-1503. doi: 10.1016/j.na.2006.07.031
    [13] P. Isazaa, J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal. TMA., 70 (2009), 2306-2316. doi: 10.1016/j.na.2008.03.010
    [14] Y. Li, W. Yan, The Cauchy problem for higher-order KdV equations forced by white noise, J. Henan Normal University, 45 (2017), 1-8.
    [15] F. Linares, A. Milanés, Local and global well-posedness for the Ostrovsky equation, J. Diff. Eqns., 222 (2006), 325-340. doi: 10.1016/j.jde.2005.07.023
    [16] Y. Prokhorov, Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl., 2 (1956), 157-214.
    [17] L. Ostrovsky, Nonlinear internal waves in a rotating ocean Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191.
    [18] S. Peszat, J. Zabczyk, Stochatsic partial differential equation with Levy noise Evolution Equation Approach, Cambridge: Cambridge University Press, 2000.
    [19] S. Wu, P. Xu, J. Huang, et al. Ergodicity of stochastic damped Ostrovsky equation driven by white noise, Discrete Cont. Dyn. B, doi:10.3934/dcdsb.2020175.
    [20] T. Yaguchi, T. Matsuo, M. Sugihara, Conservative numerical schemes for the Ostrovsky equation. J. Comput. Appl. Math., 234 (2010), 1036-1048.
    [21] W. Yan, M. Yang, J. Huang, et al. The Cauchy problem for the Ostrovsky equation with positive dispersion, Nonlinear Differential Appl., 25 (2018), 22-37. doi: 10.1007/s00030-018-0514-x
    [22] W. Yan, M. Yang, J. Duan, White noise driven Ostrovsky equation, J. Diff. Eqns., 267 (2019), 5701-5735. doi: 10.1016/j.jde.2019.06.003
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3069) PDF downloads(106) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog