Research article

An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation

  • Received: 24 October 2023 Revised: 05 December 2023 Accepted: 12 December 2023 Published: 26 December 2023
  • In this paper, an implicit compact finite difference (CFD) scheme was constructed to get the numerical solution for time fractional diffusion-wave equation (TFDWE), in which the time fractional derivative was denoted by Caputo-Fabrizio (C-F) sense. We proved that the full discrete scheme is unconditionally stable. We also proved that the rate of convergence in time is near to $ O(\tau^{2}) $ and the rate of convergence in space is near to $ O(h^{4}) $. Test problem was considered for regular domain with uniform points to validate the efficiency and accuracy of the method. The numerical results can support the theoretical claims.

    Citation: Wenjing An, Xingdong Zhang. An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation[J]. Electronic Research Archive, 2024, 32(1): 354-369. doi: 10.3934/era.2024017

    Related Papers:

  • In this paper, an implicit compact finite difference (CFD) scheme was constructed to get the numerical solution for time fractional diffusion-wave equation (TFDWE), in which the time fractional derivative was denoted by Caputo-Fabrizio (C-F) sense. We proved that the full discrete scheme is unconditionally stable. We also proved that the rate of convergence in time is near to $ O(\tau^{2}) $ and the rate of convergence in space is near to $ O(h^{4}) $. Test problem was considered for regular domain with uniform points to validate the efficiency and accuracy of the method. The numerical results can support the theoretical claims.



    加载中


    [1] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779
    [2] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and Numerical Methods, 2nd edition, World Scientific, Singapore, 2012. https://doi.org/10.1142/8180
    [3] I. Podlubny, Fractional Differential Equations, 1st edition, Academic Press, New York, 1999.
    [4] R. Du, Z. Z. Sun, G. H. Gao, A second-order linearized three-level backward Euler scheme for a class of nonlinear expitaxial growth model, Int. J. Comput. Math., 92 (2015), 2290–2309. https://doi.org/10.1080/00207160.2014.983913 doi: 10.1080/00207160.2014.983913
    [5] S. S. Zeid, Approximation methods for solving fractional equations, Chaos Soliton. Fract., 125 (2019), 171–193. https://doi.org/10.1016/j.chaos.2019.05.008 doi: 10.1016/j.chaos.2019.05.008
    [6] Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524–529. https://doi.org/10.1016/j.amc.2009.05.018 doi: 10.1016/j.amc.2009.05.018
    [7] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008
    [8] J. F. Huang, D. D. Yang, A unified difference-spectral method for time-space fractional diffusion equations, Int. J. Comput. Math., 94 (2016), 1172–1184. https://doi.org/10.1080/00207160.2016.1184262 doi: 10.1080/00207160.2016.1184262
    [9] Q. W. Xu, J. S. Hesthaven, Stable multi-domain spectral penalty methods for fractional partial differential equations, J. Comput. Phys., 257 (2014), 241–258. https://doi.org/ 10.1016/j.jcp.2013.09.041 doi: 10.1016/j.jcp.2013.09.041
    [10] Y. J. Jiang, J. T. Ma, Moving finite element methods for time fractional partial differential equations, Sci. China Math., 56 (2013), 1287–1300. https://doi.org/10.1007/s11425-013-4584-2 doi: 10.1007/s11425-013-4584-2
    [11] N. J. Ford, J. Y. Xiao, Y. B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. https://doi.org/10.2478/s13540-011-0028-2 doi: 10.2478/s13540-011-0028-2
    [12] O. Nikan, H. Jafari, A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627–2637. https://doi.org/10.1016/j.aej.2020.04.026 doi: 10.1016/j.aej.2020.04.026
    [13] X. D. Zhang, L. Yao, Numerical approximation of time-dependent fractional convection-diffusion-wave equation by RBF-FD method, Eng. Anal. Bound. Elem., 130 (2021), 1–9. https://doi.org/10.1016/j.enganabound.2021.04.022 doi: 10.1016/j.enganabound.2021.04.022
    [14] R. Du, W. R. Cao, Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34 (2010), 2998–3007. https://doi.org/10.1016/j.apm.2010.01.008 doi: 10.1016/j.apm.2010.01.008
    [15] J. C. Ren, Z. Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, East Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
    [16] J. F. Huang, Z. Qiao, J. N. Zhang, S. Arshad, Y. F. Tang, Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative, J. Appl. Math. Comput., 66 (2021), 561–579. https://doi.org/10.1007/s12190-020-01449-x doi: 10.1007/s12190-020-01449-x
    [17] Y. X. Liang, Z. S. Yao, Z. B. Wang, Fast high order difference schemes for the time fractional telegraph equation, Numer. Meth. Part. D. E., 36 (2020), 154–172. https://doi.org/10.1002/num.22423 doi: 10.1002/num.22423
    [18] V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
    [19] M. Modanli, A. Akgül, Numerical solution of fractional telegraph differential equations by theta-method, Eur. Phys. J. Special Top., 226 (2017), 3693–3703. https://doi.org/10.1140/epjst/e2018-00088-6 doi: 10.1140/epjst/e2018-00088-6
    [20] N. Abdi, H. Aminikhah, A. H. R. Sheikhani, High-order rotated grid point iterative method for solving 2D time fractional telegraph euqation and its convergence analysis, Comput. Appl. Math., 40 (2021), 1–26. https://doi.org/10.1007/s40314-021-01451-4 doi: 10.1007/s40314-021-01451-4
    [21] O. Nikan, Z. Avazzadeh, J. A. T. Machado, Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105755. https://doi.org/10.1016/j.cnsns.2021.105755 doi: 10.1016/j.cnsns.2021.105755
    [22] U. Ali, M. A. Khan, M. A. Khater, A. A. Mousa, R. A. M. Attia, A new numerical approach for solving 1D fractional diffusion-wave equation, J. Funct. Spaces., 2021 (2021), 6638597. https://doi.org/10.1155/2021/6638597 doi: 10.1155/2021/6638597
    [23] B. Yu, High-order compact finite difference method for the multi-term time fractional mixed diffusion and diffusion-wave equation, Math. Methods Appl. Sci., 44 (2021), 6526–6539. https://doi.org/10.1002/mma.7207 doi: 10.1002/mma.7207
    [24] X. Li, S. Li, A fast element-free Galerkin method for the fractional diffusion-wave equation, Appl. Math. Lett., 122 (2021), 107529. https://doi.org/10.1016/j.aml.2021.107529 doi: 10.1016/j.aml.2021.107529
    [25] A. Bhardwaj, A. Kumar, A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation, Appl. Numer. Math., 160 (2021), 146–165. https://doi.org/10.1016/j.apnum.2020.09.019 doi: 10.1016/j.apnum.2020.09.019
    [26] S. Z. Jiang, Y. J. Wu, Recovering space-dependent source for a time-space fractional diffusion wave equation by fractional Landweber method, Inverse Probl. Sci. Eng., 29 (2021), 990–1011. https://doi.org/10.1080/17415977.2020.1815724 doi: 10.1080/17415977.2020.1815724
    [27] I. Ates, A. Yıldırım, Applications of variational iteration and homotopy perturbation methods to obtain exact solutions for time-fractional diffusion-wave equations, Int. J. Numer. Method H., 20 (2010), 638–654. https://doi.org/10.1108/09615531011056809 doi: 10.1108/09615531011056809
    [28] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [29] Q. Rubbab, M. Nazeer, F. Ahmad, Y. M. Chu, M. I. Khan, S. Kadry, Numerical simulation of advection-diffusion equation with Caputo-Fabrizio time fractional derivative in cylindrical domains: applications of pseudo-spectral collocation method, Alex. Eng. J., 60 (2021), 1731–1738. https://doi.org/10.1016/j.aej.2020.11.022 doi: 10.1016/j.aej.2020.11.022
    [30] J. K. Shi, M. H. Chen, A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo-Fabrizio fractional derivative, Appl. Numer. Math., 151 (2020), 246–262. https://doi.org/10.1016/j.apnum.2020.01.007 doi: 10.1016/j.apnum.2020.01.007
    [31] Y. Massoun, Analytic study of pine wilt disease model with Caputo-Fabrizio fractional derivative, Math. Method Appl. Sci., 45 (2022), 7072–7080. https://doi.org/10.1002/mma.8225 doi: 10.1002/mma.8225
    [32] S. Kumar, J. F. G. Aguilar, P. Pandey, Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative, Math. Meth. Appl. Sci., 43 (2020), 8595–8607. https://doi.org/10.1002/mma.6517 doi: 10.1002/mma.6517
    [33] N. H. Tuan, Y. Zhou, Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative, J. Comput. Appl. Math., 375 (2020), 112811. https://doi.org/10.1016/j.cam.2020.112811 doi: 10.1016/j.cam.2020.112811
    [34] N. Abdi, H. Aminikhah, A. H. R. Sheikhani, J.Alavi, A high-order compact alternating direction implicit method for solving the 3D time-fractional diffusion equation with the Caputo-Fabrizio operator, Math. Sci., 14 (2020), 359–373. https://doi.org/10.1007/s40096-020-00346-5 doi: 10.1007/s40096-020-00346-5
    [35] L. N. Huynh, N. H. Luc, D. Baleanu, L. D. Long, Recovering the space source term for the fractional-diffusion equation with Caputo-Fabrizio derivative, J. Inequal. Appl., 2021 (2021), 28. https://doi.org/10.1186/s13660-021-02557-3 doi: 10.1186/s13660-021-02557-3
    [36] G. H. Gao, Z. Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586–595. https://doi.org/10.1016/j.jcp.2010.10.007 doi: 10.1016/j.jcp.2010.10.007
    [37] G. H. Gao, Z. Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions (II), Numer. Meth. Part. D. E., 29 (2013), 1459–1486. https://doi.org/10.1002/num.21760 doi: 10.1002/num.21760
    [38] L. Y. Li, Z. W. Jiang, Z. Yin, Fourth-order compact finite difference method for solving two-dimensional convection-diffusion equation, Adv. Differ. Equation, 2018 (2018), 1–24. https://doi.org/10.1186/s13662-018-1652-5 doi: 10.1186/s13662-018-1652-5
    [39] W. Y. Liao, J. P. Zhu, A. Q. M. Khaliq, A fourth-order compact algorithm for system of nonlinear reaction-diffusion equations with Neumann boundary conditions, Numer. Meth. Part. D. E., 22 (2006), 600–616. https://doi.org/10.1002/num.20111 doi: 10.1002/num.20111
    [40] H. L. Liao, Z. Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Part. Differ. Equations, 26 (2010), 37–60. https://doi.org/10.1002/num.20414 doi: 10.1002/num.20414
    [41] Z. Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions, Numer. Meth. Part. Differ. Equations, 25 (2009), 1320–1341. https://doi.org/10.1002/num.20402 doi: 10.1002/num.20402
    [42] C. Li, F. Zeng, Numerical method for fractional calculus, CRC Press, New York, 2015.
    [43] S. Nandal, D. N. Pandey, Second order compact difference scheme for time fractional sub-diffusion fourth-order neutral delay differential equations, Differ. Equations Dyn. Syst., 29 (2021), 69–86. https://doi.org/10.1007/s12591-020-00527-7 doi: 10.1007/s12591-020-00527-7
    [44] X. D. Zhang, P. Z. Huang, X. L. Feng, L. L. Wei, Finite element method for two-dimensional time-fractional tricomi-type equations, Numer. Meth. Part. Differ. Equations, 29 (2013), 1081–1096. https://doi.org/10.1002/num.21745 doi: 10.1002/num.21745
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(673) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog