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Abstract: In this paper, an implicit compact finite difference (CFD) scheme was constructed to get the
numerical solution for time fractional diffusion-wave equation (TFDWE), in which the time fractional
derivative was denoted by Caputo-Fabrizio (C-F) sense. We proved that the full discrete scheme is
unconditionally stable. We also proved that the rate of convergence in time is near to O(τ2) and the
rate of convergence in space is near to O(h4). Test problem was considered for regular domain with
uniform points to validate the efficiency and accuracy of the method. The numerical results can support
the theoretical claims.

Keywords: time fractional diffusion-wave equation (TFDWE); compact finite difference; caputo-fabrizio
derivative; unconditional stability; convergence

1. Introduction

Fractional calculus has gained considerable popularity and importance during the past decades, due
mainly to its demonstrated applications in many fields, such as physics, engineering etc [1–3]. Due to
this fact, many authors have proposed a mass of numerical methods to solve fractional partial differential
equations (FPDEs) [4, 5], for instance, finite difference methods (FDMs) [6, 7], spectral methods [8, 9],
finite element methods [10, 11], radial basis functions (RBF) methods [12, 13] and so on.

Next, we will introduce some research results on FPDEs. Du et al. considered a numerical scheme
with high accuracy for the fractional diffusion-wave equation [14]. Ren and Sun used the finite
difference method to obtain numerical schemes of time fractional diffusion-wave equation [15]. Huang
et al. considered the linearized numerical schemes for nonlinear time fractional wave equations [16].
Liang et al. studied a high order difference scheme for time fractional telegraph equation in the sense
of Caputo [17]. Hosseini et al. applied the RBFs to solve a time fractional telegraph equation defined
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by Caputo sense [18]. Modanli and Akgul constructed a difference scheme for the fractional telegraph
equation [19]. Abdi et al. proposed a compact finite difference (CFD) and rotated point method for 2D
time fractional telegraph equation [20]. Nikan investigated the approximate solution of the nonlinear time
fractional telegraph equation [21].

There are many results for the fractional diffusion-wave equation, in which fractional derivatives are
used with singular kernel. For example, Ali et al. proposed a new numerical approach method for the
fractional diffusion-wave equation with fractional derivative in the sense of Riemann-Liouville [22].
Yu constructed a high-order compact finite difference scheme for time fractional mixed diffusion and
diffusion-wave equation [23]. Li et al. discussed a fast element-free Galerkin method for the fractional
diffusion-wave equation, in which the time fractional derivatives are defined in the Caputo sense [24].
Bhardwaj and Kumar proposed a meshless method for time fractional nonlinear mixed diffusion and
diffusion-wave equation [25]. Jiang and Wu studied a time-space fractional diffusion wave equation by
fractional Landweber method [26]. Ates and Yıldırım obtained the approximate analytical solution for
time-fractional diffusion-wave equations [27].

In order to eliminate the singular kernel in the fractional derivative, Caputo and Fabrizio proposed a
new fractional derivative called the Caputo-Fabrizio (C-F) derivative [28]. C-F derivative is a promising
differentiation operator and has been widely used to model several problems arising in different fields
of science and engineering such as biology, physics, fluid dynamics and control systems [29–31].
The results of fractional diffusion and the diffusion-wave equation with C-F derivative can be found
in [32–35].

The traditional finite difference method cannot obtain high-order numerical approximation. In order
to obtain higher precision numerical approximation, the compact finite difference method has been
studied by many scholars. For example, Gao and Sun considered a compact finite difference scheme
with the purpose of solving the fractional sub-diffusion equations for the heat equation in the condition
of the Neumann boundary [36, 37]. In order to solve groundwater pollution phenomenon, Li et al.
constructed a 2D mathematical model, which has the fourth order accurate [38]. Liao et al. discussed a
compact algorithm to analyze nonlinear reaction-diffusion equations [39]. Liao and Sun proposed an
implicit scheme to solve the multidimensional parabolic equations [40].

In this paper, the time fractional diffusion-wave equation is discussed in the sense of the C-F
derivative. The main purpose of this article is to verify the effectiveness of the compact finite difference
method for the time fractional diffusion-wave equation with C-F derivative. An implicit compact finite
difference scheme is constructed to obtain the numerical solution for the following equation:

CF
0 Dβ

t u(x, t) +
∂2u(x, t)
∂t2 = a2∂

2u(x, t)
∂x2 + F(x, t), 0 < x < L, 0 < t ≤ T,

u(x, 0) = Ψ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ L,

u(0, t) = g1(x), u(L, t) = g2(x), 0 ≤ t ≤ T,

(1.1)

where 0 < β < 1, a > 0, F(x, t) is a known function, Ψ(x), ψ(x), g1(x) and g2(x) are given continuous
functions and CF

0 Dβ
t u(x, t) is the C-F fractional derivative, whose definition is as follows

CF
0 Dβ

t u(x, t) =
1

1 − β

∫ t

0
u′(s)e−

β
1−β (t−s)ds =

1
1 − β

∫ t

0
u′(s)e−η(t−s)ds, η =

β

1 − β
.

Theoretical analysis and numerical results show that the compact finite difference method is effective
for solving the time fractional diffusion-wave equation with C-F derivative.

Electronic Research Archive Volume 32, Issue 1, 354–369.



356

The remaining part of this paper is organized as follows: In Section 2, we introduce some basic
knowledge and present a CFD scheme for Eq (1.1). In Section 3, we use the mathematical induction and
energy inequality method to analyze the unconditionally stable and convergence of the CFD scheme. In
Section 4, we provide a detailed exposition of the theoretical aspect by the numerical experiment. Some
conclusions are given in Section 5.

2. Construction of the CFD scheme

In this section, some basic knowledge is introduced and the CFD scheme for Eq (1.1) is presented.
Due to the arbitrariness of C, we allow the value of C to be different at different locations.

For any positive integers M and N, let x j = jh ( j = 0, 1, 2, · · · , M) with h = L/M and tn = nτ
(n = 0, 1, 2, · · · , N) with τ = T/N, where h and τ are space and time step size, respectively. Define
the grid function un

j = u(x j, tn) and Fn
j = F(x j, tn). Some notations, inner products, norms and

lemmas are as follows.

δ2
xu

n
j =

1
h2 (un

j+1 − 2un
j + un

j−1), ⟨un, vn⟩ = h
M−1∑
j=1

un
jv

n
j ,

∥un∥ =
√
⟨un, un⟩, ∥δ2

xu
n∥ =

√
⟨δ2

xun, δ2
xun⟩,

∥u∥H =
√

(u, u)H , (u, v)H = ⟨δxu, δxv⟩ −
h2

12
⟨δ2

xu, δ
2
xv⟩.

Denote Vh = {v|v = (v0, v1, · · · , vM), v0 = vM = 0} as the grid function space on Ωh = {x j|0 ≤ j ≤ M}.
Define the compact finite difference operator as

Hun
j =


1
12

(un
j−1 + 10un

j + un
j+1) = (I +

h2

12
δ2

x)u
n
j , 1 ≤ j ≤ M − 1,

un
j , j = 0,M.

Lemma 2.1. ( [41]) Suppose g(x) ∈ C6[0, L] and xi = ih, 0 ≤ i ≤ M, then

1
12

[g′′(xi+1) + 10g′′(xi) + g′′(xi−1)] −
1
h2 [g(xi+1) − 2g(xi) + g(xi−1)] =

h4

240
g(6)(ξi),

where ξi ∈ (xi−1, xi+1), 1 ≤ i ≤ M − 1.

Lemma 2.2. ( [30]) Assume 0 < β < 1, let η = β

1−β . Let u(t) be a continuous differentiable function for
t ≥ 0, then

CF
0 Dβ

t u(tn) =
1

1 − β

n∑
i=1

u(tk) − u(tk−1)
ητ

e−η(n−i)τ(1 − e−ητ) + O(τ2).

For a given discrete grid point (x j, tn), by Eq (1.1), we have

CF
0 Dβ

t u(x j, tn) +
∂2u(x j, tn)

∂t2 =
a2

2
∂2u(x j, tn+1)

∂x2 +
a2

2
∂2u(x j, tn−1)

∂x2 + F(x j, tn). (2.1)

Applying compact finite difference operatorH to Eq (2.1), we have

HCF
0 Dβ

t u(x j, tn) +H
∂2u(x j, tn)

∂t2 =
a2

2
H
∂2u(x j, tn+1)

∂x2 +
a2

2
H
∂2u(x j, tn−1)

∂x2 +HF(x j, tn). (2.2)
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First, we will use Lemma 2.2 to discretize C-F derivative, then we have

HCF
0 Dβ

t u(x j, tn) =
(1 − e−ητ)
(1 − β)ητ

n∑
i=1

(Hui
j −Hui−1

j )e−η(n−i)τ + O(τ2),

H
∂2u(x j, tn)

∂t2 = H
(un+1

j − 2un
j + un−1

j

τ2

)
=

1
τ2 (Hun+1

j − 2Hun
j +Hun−1

j ) + O(τ2).

(2.3)

Second, applying Lemma 2.1 to discretize the first term and the second term on the right of Eq (2.2),
we have

a2

2
H
∂2u(x j, tn+1)

∂x2 +
a2

2
H
∂2u(x j, tn−1)

∂x2 =
a2

2
δ2

xu
n+1
j +

a2

2
δ2

xu
n−1
j + O(h4). (2.4)

Substituting Eqs (2.3) and (2.4) into Eq (2.2), we can obtain

λ

n∑
i=1

(Hui
j −Hui−1

j )e−η(n−i)τ +
1
τ2 (Hun+1

j − 2Hun
j +Hun−1

j )

=
a2

2
δ2

xu
n+1
j +

a2

2
δ2

xu
n−1
j +HFn

j + Rn
j ,

(2.5)

where λ = (1−e−ητ)
βτ

and |Rn
j | ≤ C(τ2 + h4).

We denote the exact solution and numerical solution with un
j and Un

j , respectively. Now, omitting
the error term Rn

j from Eq (2.5), the exact value un
j is approximated by Un

j , which is the numerical
approximation, and the resulted CFD scheme is as follows

λ

n∑
i=1

(HU i
j −HU i−1

j )e−η(n−i)τ +
1
τ2 (HUn+1

j − 2HUn
j +HUn−1

j )

=
a2

2
δ2

xU
n+1
j +

a2

2
δ2

xU
n−1
j +HFn

j .

(2.6)

Additionally, we can obtain the discrete initial and boundary condition as follows

U0
j = φ(x j), 0 ≤ j ≤ M,

Un
0 = 0, Un

M = 0, 1 ≤ n ≤ N.

3. Stability analysis and error estimation of the CFD scheme

Before starting the stability and convergence analysis of CFD scheme Eq (2.6), we will introduce
some useful lemmas. In the following analysis, omit the subscript j.

Lemma 3.1. ( [42]) For arbitrary u, v ∈ Vh, it holds that ⟨δ2
xu

n, vn⟩ = −⟨δxun, δxvn⟩.

By the definition ofH and Lemma 3.1, the following lemma can be obtained

Lemma 3.2. Suppose u, v ∈ Vh, then −⟨δ2
xu,Hv⟩ = (u, v)H .

Electronic Research Archive Volume 32, Issue 1, 354–369.



358

Lemma 3.3. ( [43]) Let v ∈ Vh, then the following inequality holds

1
3
∥v∥2 ≤ ∥Hv∥2 ≤ ∥v∥2.

Lemma 3.4. ( [44]) Let u−1 = u0 − τψ and ε−1 = u(x, t−1) − u−1, then

|ε−1| ≤ Cτ2, ∥u−1∥ ≤
3
2
∥u0∥ +

1
2
∥u1∥.

For the full discrete scheme Eq (2.6), we have the following stability result as Theorem 3.5, which
shows that the full discrete scheme is unconditionally stable.

Theorem 3.5. Let Un be the numerical solution of Eq (2.6). The full discrete scheme Eq (2.6) is
unconditionally stable in the sense that for all τ > 0, it holds that

∥Un∥ ≤ C(∥U0∥ + max
0≤s≤n−1

∥F s∥),

where C is a constant.

Proof. By Eq (2.6), we have

HUn+1 −
1
2

a2τ2δ2
xU

n+1

= 2HUn +
1
2

a2τ2δ2
xU

n−1 −HUn−1 − λτ2
n∑

i=1

(HU i −HU i−1)e−η(n−i)τ + τ2HFn.
(3.1)

Multiply both sides of Eq (3.1) byHUn+1 simultaneously. Do the inner product and we have

⟨HUn+1,HUn+1⟩ −
1
2

a2τ2⟨δ2
xU

n+1,HUn+1⟩

= 2⟨HUn,HUn+1⟩ +
1
2

a2τ2⟨δ2
xU

n−1,HUn+1⟩ − ⟨HUn−1,HUn+1⟩

− λτ2
n∑

i=1

(
⟨HU i,HUn+1⟩ − ⟨HU i−1,HUn+1⟩

)
e−η(n−i)τ + τ2⟨HFn,HUn+1⟩.

(3.2)

According to the Cauchy-Schwarz inequality, norm-equivalence theorem and Lemmas 3.2 and 3.3,
we have
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∥HUn+1∥ ≤2∥HUn∥ +
2
3

Ca2τ2∥HUn−1∥ − ∥HUn−1∥ − λτ2
n∑

i=1

∥HU i∥e−η(n−i)τ

+ λτ2
n∑

i=1

∥HU i−1∥e−η(n−i)τ + τ2∥HFn∥

≤2∥HUn∥ +
2
3

Ca2τ2∥HUn−1∥ + ∥HUn−1∥ + λτ2
n∑

i=1

∥HU i∥e−η(n−i)τ

+ λτ2
n∑

i=1

∥HU i−1∥e−η(n−i)τ + τ2∥HFn∥

≤C∥HUn∥ +C∥HUn−1∥ + λτ2
n−1∑
i=1

∥HU i∥e−η(n−i)τ

+ λτ2
n−1∑
i=1

∥HU i−1∥e−η(n−i)τ +C∥HFn∥.

(3.3)

For the Eq (3.3), when n = 0, using Lemma 3.4 we have

∥HU1∥ ≤C∥HU0∥ + ∥HU−1∥ +C∥HF1∥

≤C∥HU0∥ +
3
2
∥HU0∥ +

1
2
∥HU1∥ +C∥HF0∥

≤C(∥HU0∥ + ∥HF0∥).

(3.4)

Assume that Eq (3.3) holds for m = 1, 2, · · · , n − 1, which means that

∥HUm∥ ≤ C(∥HU0∥ + max
1≤s≤m−1

∥HF s∥). (3.5)

Now, we will prove it holds for m = n. Let An = C(∥HU0∥+ max
1≤s≤n−1

∥HF s∥). According to Eqs (3.3)–(3.5),

we can obtain

∥HUn∥

≤ C∥HUn−1∥ + ∥HUn−2∥ + λτ2
n−1∑
i=1

(∥HU i + ∥HU i−1∥)∥e−η(n−i)τ +C∥H f n−1∥

≤ λτ2
n−1∑
i=1

∥HU i−1∥e−η(n−i)τ + λτ2
n−1∑
i=1

∥HU i∥e−η(n−i)τ +C(∥HU0∥ + max
1≤s≤n−1

∥HF s∥)

≤ λτ2
n−1∑
i=1

e−η(n−i)τAk−1 + λτ
2

n−1∑
i=1

e−η(n−i)τAk +C(∥HU0∥ + max
1≤s≤n−1

∥HF s∥)

≤ C(∥HU0∥ + max
1≤s≤n−2

∥HF s∥) +C(∥HU0∥ + max
1≤s≤n−1

∥HF s∥)

≤ C(∥HU0∥ + max
1≤s≤n−1

∥HF s∥).

(3.6)
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Using Lemma 3.3, we can obtain ∥U∥ ≤
√

3∥HU∥, ∥HU∥ ≤ ∥U∥, then

∥Un∥ ≤ C(∥U0∥ + max
1≤s≤n−1

∥F s∥),

which completes the proof. □

We denote the exact solution and numerical solution with un and Un, respectively. Let en = un − Un.
Now, we aim at deriving the error estimates for ∥en∥, which is given in the following theorem.

Theorem 3.6. Assume u(x, t) ∈ C6,3
x,t . Let en = un − Un, and it holds that

∥en∥ ≤ C(τ2 + h4),

where C is a constant.

Proof. Subtracting Eq (2.6) from Eq (2.5), we have

λ

n∑
i=1

(Hei −Hei−1)e−η(n−i)τ +
1
τ2 (Hen+1 − 2Hen +Hen−1)

=
a2

2
δ2

xe
n+1 +

a2

2
δ2

xe
n−1 + Rn.

(3.7)

By the similar deduction as Eq (3.1), we can obtain

Hen+1 −
1
2

a2τ2δ2
xe

n+1

= 2Hen +
1
2

a2τ2δ2
xe

n−1 −Hen−1 − λτ2
n∑

i=1

(Hei −Hei−1)e−η(n−i)τ + τ2Rn.
(3.8)

Multiply both sides of Eq (3.8) byHen+1 simultaneously. Do the inner product and we have

⟨Hen+1,Hen+1⟩ −
1
2

a2τ2⟨δ2
xe

n+1,Hen+1⟩

= 2⟨Hen,Hen+1⟩ +
1
2

a2τ2⟨δ2
xe

n−1,Hen+1⟩ − ⟨Hen−1,Hen+1⟩

− λτ2
n∑

i=1

(
⟨Hei,Hen+1⟩ − ⟨Hei−1,Hen+1⟩

)
e−η(n−i)τ + τ2⟨Rn,Hen+1⟩.

(3.9)

According to the Cauchy-Schwarz inequality, norm-equivalence theorem and Lemmas 3.2 and 3.3, we
can get

∥Hen+1∥ ≤2∥Hen∥ +
2
3

Ca2τ2∥Hen−1∥ − ∥Hen−1∥ − λτ2
n∑

i=1

∥Hei∥e−η(n−i)τ

+ λτ2
n∑

i=1

∥Hei−1∥e−η(n−i)τ + τ2∥Rn∥

≤C∥Hen∥ +C∥Hen−1∥ + λτ2
n−1∑
i=1

∥Hei∥e−η(n−i)τ

+ λτ2
n−1∑
i=1

∥Hei−1∥e−η(n−i)τ +C∥Rn∥.

(3.10)
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For the Eq (3.10), when n = 0, we have

∥He1∥ ≤ C∥He0∥ +C∥He−1∥ +C∥R0∥. (3.11)

Now, we turn to analyze ∥He−1∥. Using Lemma 3.4, we can obtain

∥e−1∥ =∥u(x, t−1) − U−1∥

=∥u(x, t−1) − u−1 + u−1 − U−1∥

=∥ε−1 + u0 − τψ − (U0 − τψ)∥
≤C(τ2).

Thus, ∥He−1∥ ≤ ∥e−1∥ ≤ C(τ2). According to Eq (3.11), we have ∥He1∥ ≤ C(τ2 + h4).
Assume when m = 1, 2, · · · , n − 1 , it holds that

∥Hem∥ ≤ C(τ2 + h4). (3.12)

Now, we will prove it holds for m = n. According to Eqs (3.10)–(3.12) and by the similar deduction as
Eq (3.6), we can derive that

∥Hen∥ ≤C∥Hen−1∥ +C∥Hen−2∥ + λτ2
n−2∑
i=1

∥Hei∥e−η(n−i)τ

+ λτ2
n−2∑
i=1

∥Hei−1∥e−η(n−i)τ +C∥Rn−1∥

≤λτ2
n−2∑
i=1

∥Hei∥e−η(n−i)τ + λτ2
n−2∑
i=1

∥Hei−1∥e−η(n−i)τ +C(τ2 + h4)

≤C(τ2 + h4)λτ2
n−2∑
i=1

e−η(n−i)τ +C(τ2 + h4)

≤C(τ2 + h4).

(3.13)

According to Lemma 3.3, it holds that ∥en∥ ≤
√

3∥Hen∥, then the following estimate is obtained

∥en∥ ≤ C(τ2 + h4).

The proof of the theorem is completed. □

4. Numerical results

This section is devoted to do some numerical simulation, which will show that the proposed numerical
method is accurate and convergent. In the process of experiment, we applyied the L∞ norm to compute
the numerical results. The numerical experiment was carried out using MATLAB2017a under the
environment of Inter Core i5–8265U computer with 4GB internal storage and 1.60GHZ. The L∞ norm
error can be obtained by the following formula

e∞(τ, h) = ∥un − Un∥∞.

Electronic Research Archive Volume 32, Issue 1, 354–369.



362

Example 1. We consider the time fractional diffusion-wave equation (TFDWE) with a = 1
CF
0 Dβ

t u(x, t) +
∂2u(x, t)
∂t2 = a2∂

2u(x, t)
∂x2 + F(x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = sin(2πx), ut(x, 0) = 0, 0 ≤ x ≤ 1,
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1,

where 0 < β < 1, u(x, t) = (t3 + 1) sin(2πx) and

F(x, t) =
1

1 − β

(3t2

η
−

6t
η2 +

6
η3 (1 − e−ηt)

)
sin(2πx) + 6t sin(2πx) + 4π2(t3 + 1) sin(2πx).

The result of Example 1 will be shown in Tables 1 and 2 and Figures 1–3. Tables 1 and 2 show
the maximum error, convergence order and Central Processing Unit (CPU) time of the CFD scheme
Eq (2.6) in time and in space, respectively. We first verify the time convergence accuracy by using
the following formula

Order = log2

(e∞(τ1, h)
e∞(τ, h)

)
,

where τ1 = 2τ.
We first investigate the temporal convergence rate. To this end, M is chosen big enough such that the

errors stemming from the spatial approximation are negligible. The numerical results for a fixed value
of β (where β = 0.2, 0.4, 0.6, 0.8, respectively) and h = 1/100, with different values of τ at time T = 1
are reported in Table 1. From the data in Table 1, it can be seen that the rate of convergence in time is
near to O(τ2), which has a nice agreement with theoretical one in Theorem 3.6.

Second, we verify the spatial accuracy of convergence by using the following formula

Order = log2

(e∞(τ1, 2h)
e∞(τ2, h)

)
,

where τ1 = 4h2 and τ2 = h2.
Now, we check the spatial accuracy by fixing the time step sufficiently small to avoid contamination of

the temporal error. The numerical results for a fixed value of β (where β = 0.2, 0.4, 0.6, 0.8, respectively),
with different values of h (τ = h2) at time T = 1 are reported in Table 2. From the data in Table 2, it
can be seen that the rate of convergence in space is near to O(h4), which has a nice agreement with
theoretical one in Theorem 3.6.

In Figures 1–3, we take N = 100 and M = 5000. We use the (a), (b), (c) and (d) to denote the
exact solution, numerical solution, absolute error and contour plot of error, respectively. The results of
β = 0.15, 0.5, 0.95 are shown in Figures 1–3. By Figures 1–3, we can find that the numerical solution of
Eq (1.1) is infinitely close to the exact solution when β takes different values.

It is found that the present method is a reliable approach to deal with the one-dimensional problem
in regular domain with uniform points. In the future, we want to extend the considered problem to
multi-term time-fractional mixed problems using the proposed method.
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Table 1. L∞ norm errors, convergence orders and CPU time with β = 0.2, 0.4, 0.6, 0.8.

β h τ e∞(τ, h) order CPU time(s)
1/10 3.0593 × 10−2 — 0.0098
1/20 7.3141 × 10−3 2.06 0.0237

0.2 1/100 1/40 1.8103 × 10−3 2.01 0.0417
1/80 4.5144 × 10−4 2.00 0.0915
1/160 1.1275 × 10−4 2.00 0.2573
1/10 3.0342 × 10−2 — 0.0189
1/20 7.2626 × 10−3 2.07 0.0230

0.4 1/100 1/40 1.7982 × 10−3 2.01 0.0424
1/80 4.4848 × 10−4 2.00 0.0929
1/160 1.1201 × 10−4 2.00 0.2523
1/10 2.9990 × 10−2 — 0.0193
1/20 7.1960 × 10−3 2.06 0.0321

0.6 1/100 1/40 1.7830 × 10−3 2.01 0.0399
1/80 4.4477 × 10−4 2.00 0.0932
1/160 1.1109 × 10−4 2.00 0.2575
1/10 2.9495 × 10−2 — 0.0175
1/20 7.1187 × 10−3 2.05 0.0226

0.8 1/100 1/40 1.7666 × 10−3 2.01 0.0399
1/80 4.4084 × 10−4 2.00 0.0973
1/160 1.1011 × 10−4 2.00 0.2568

(a) Exact solution. (b) Numerical solution

(c) Absolute error. (d) Contour plot of absolute error.

Figure 1. The results for Example 1 with β = 0.15.
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Table 2. L∞ norm errors, convergence orders and CPU time with β = 0.3, 0.5, 0.7, 0.9.

β τ h e∞(τ, h) order CPU time(s)
1/25 1/5 4.3923 × 10−3 — 0.0212
1/100 1/10 2.6180 × 10−4 4.07 0.0250

0.3 1/400 1/20 1.6755 × 10−5 3.97 0.3728
1/1600 1/40 1.0394 × 10−6 4.01 3.9936
1/6400 1/80 6.5165 × 10−8 4.00 136.8142
1/25 1/5 4.7558 × 10−3 — 0.0133
1/100 1/10 2.8305 × 10−4 4.07 0.0228

0.5 1/400 1/20 1.8110 × 10−5 3.97 0.2663
1/1600 1/40 1.1234 × 10−6 4.01 4.0769
1/6400 1/80 7.0513 × 10−8 3.99 126.7946
1/25 1/5 5.6247 × 10−3 — 0.0140
1/100 1/10 3.3395 × 10−4 4.07 0.0264

0.7 1/400 1/20 2.1380 × 10−5 3.97 0.2563
1/1600 1/40 1.3266 × 10−6 4.01 3.9717
1/6400 1/80 8.3430 × 10−8 3.99 126.3879
1/25 1/5 7.6281 × 10−3 — 0.0130
1/100 1/10 4.5231 × 10−4 4.08 0.0228

0.9 1/400 1/20 2.9091 × 10−5 3.96 0.2127
1/1600 1/40 1.8076 × 10−6 4.01 4.0002
1/6400 1/80 1.1941 × 10−7 3.92 126.6125

(a) Exact solution. (b) Numerical solution.

(c) Absolute error. (d) Contour plot of absolute error.

Figure 2. The results for Example 1 with β = 0.5.
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(a) Exact solution. (b) Numerical solution.

(c) Absolute error. (d) Contour plot of absolute error.

Figure 3. The results for Example 1 with β = 0.95.

5. Conclusions

In this paper, we constructed an implicit numerical scheme for TFDWE. Compared with the
traditional DWEs, the C-F derivative was used in our paper. We proved that the implicit numerical
scheme was unconditionally stable. We also proved that the rate of convergence in time is near to O(τ2)
and the rate of convergence in space is near to O(h4). The numerical experiments verified our
theoretical results. In the future, we will work on the numerical solutions of multidimensional FPDEs
and irregular region equations. Also in the future, we would like to investigate fractional derivatives in
both space and time.
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