Theory article

Analysis of a stochastic Leslie-Gower predator-prey system with Beddington-DeAngelis and Ornstein–Uhlenbeck process

  • Received: 05 October 2023 Revised: 03 December 2023 Accepted: 18 December 2023 Published: 27 December 2023
  • In this paper, a stochastic Leslie-Gower model with Beddington-DeAngelis functional response driven by the Ornstein-Uhlenbeck process is studied. Some asymptotic properties of the solution of the stochastic Leslie-Gower model are introduced: the existence and uniqueness of the global solution of the model are demonstrated, the ultimate boundedness of the model is analyzed, the existence of the stationary distribution of the model is proven, and the conditions for system extinction are discussed. Finally, numerical simulations are utilized to verify our conclusions.

    Citation: Yifan Wu, Xiaohui Ai. Analysis of a stochastic Leslie-Gower predator-prey system with Beddington-DeAngelis and Ornstein–Uhlenbeck process[J]. Electronic Research Archive, 2024, 32(1): 370-385. doi: 10.3934/era.2024018

    Related Papers:

  • In this paper, a stochastic Leslie-Gower model with Beddington-DeAngelis functional response driven by the Ornstein-Uhlenbeck process is studied. Some asymptotic properties of the solution of the stochastic Leslie-Gower model are introduced: the existence and uniqueness of the global solution of the model are demonstrated, the ultimate boundedness of the model is analyzed, the existence of the stationary distribution of the model is proven, and the conditions for system extinction are discussed. Finally, numerical simulations are utilized to verify our conclusions.



    加载中


    [1] H. Patrick, P. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
    [2] P. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. https://doi.org/10.2307/2333042 doi: 10.2307/2333042
    [3] S. Yu, Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response, Adv. Differ. Equations, 2014 (2014). https://doi.org/10.1186/1687-1847-2014-84
    [4] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [5] F. Rao, Dynamical analysis of a stochastic predator-prey model with an Allee effect, Abstr. Appl. Anal., 2013 (2013). https://doi.org/10.1155/2013/340980
    [6] Y. Fu, K. Zhou, Global stability of a stochastic Beddington-DeAngelis type predator-prey model with time delay and stage structure for prey incorporating refuge, J. Phys., 1324 (2019), 012039. https://doi.org/10.1088/1742-6596/1324/1/012039 doi: 10.1088/1742-6596/1324/1/012039
    [7] A. Das, G. P. Samanta, Modeling the fear effect on a stochastic prey–predator system with additional food for the predator, J. Phys., 51 (2018), 465601. https://doi.org/10.1088/1751-8121/aae4c6 doi: 10.1088/1751-8121/aae4c6
    [8] X. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833
    [9] X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Woodhead Publishing, Oxford, 2011. https://doi.org/10.1533/9780857099402.47
    [10] D. Zhao, S. Yuan, Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate, Phys. A Statistical Mechanics Appl., 461 (2016), 419–428. https://doi.org/10.1016/j.physa.2016.06.010 doi: 10.1016/j.physa.2016.06.010
    [11] A. Lahrouz, A. Settati, P. S. Mandal, Dynamics of a switching diffusion modified Leslie–Gower predator–prey system with Beddington–DeAngelis functional response, Nonlinear Dyn., 85 (2016), 853–870 https://doi.org/10.1007/s11071-016-2728-y doi: 10.1007/s11071-016-2728-y
    [12] X. Zhang, Q. Yang, D. Jiang, A stochastic predator–prey model with Ornstein–Uhlenbeck process: Characterization of stationary distribution, extinction and probability density function, Commun. Nonlinear Sci. Numer. Simul., 122 (2023), 107259. https://doi.org/10.1016/j.cnsns.2023.107259 doi: 10.1016/j.cnsns.2023.107259
    [13] X. Chen, B. Tian, X. Xu, D. Li, A stochastic predator–prey system with modified LG-Holling type II functional response, Math. Comput. Simul., 203 (2023), 449–485. https://doi.org/10.1016/j.matcom.2022.06.016 doi: 10.1016/j.matcom.2022.06.016
    [14] Y. Song, X. Zhang, Stationary distribution and extinction of a stochastic SVEIS epidemic model incorporating Ornstein–Uhlenbeck process, Appl. Math. Letters, 133 (2023), 108284. https://doi.org/10.1016/j.aml.2022.108284 doi: 10.1016/j.aml.2022.108284
    [15] B. Wen, B. Liu, Q. Cui, Analysis of a stochastic SIB cholera model with saturation recovery rate and Ornstein-Uhlenbeck process, Math. Biosci. Eng., 20 (2023), 11644–11655. https://doi.org/10.3934/mbe.2023517 doi: 10.3934/mbe.2023517
    [16] Q. Liu, Stationary distribution and extinction of a stochastic HLIV model with viral production and Ornstein–Uhlenbeck process, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 10711. https://doi.org/10.1016/j.cnsns.2023.107111 doi: 10.1016/j.cnsns.2023.107111
    [17] Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
    [18] R. Khasminskii, Stochastic Stability of Differential Equations, Springer Berlin Heidelberg, Berlin, 2012. https://doi.org/10.1007/978-3-642-23280-0_5
    [19] D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochasticfunctional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005–1023. https://doi.org/10.3934/dcds.2009.24.1005 doi: 10.3934/dcds.2009.24.1005
    [20] R. A. Lipster, A strong law of large numbers for local martingales, Stochastics Int. Probab. Stochastic Process., 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146
    [21] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(857) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog