In this paper, we considered a delayed predator-prey model with stage structure and Beddington-DeAngelis type functional response. First, we analyzed the stability of the constant equilibrium points of the model by the linear stability method. Furthermore, we considered the existence of traveling wave solutions connecting the zero equilibrium point and the unique positive equilibrium point. Second, we transformed the existence of traveling wave solutions into the existence of fixed points of an operator by constructing suitable upper and lower solutions, and combined with the Schauder fixed point theorem, we gave the existence of fixed points and obtained the existence of traveling wave solutions of the model.
Citation: Meng Wang, Naiwei Liu. Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure[J]. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121
In this paper, we considered a delayed predator-prey model with stage structure and Beddington-DeAngelis type functional response. First, we analyzed the stability of the constant equilibrium points of the model by the linear stability method. Furthermore, we considered the existence of traveling wave solutions connecting the zero equilibrium point and the unique positive equilibrium point. Second, we transformed the existence of traveling wave solutions into the existence of fixed points of an operator by constructing suitable upper and lower solutions, and combined with the Schauder fixed point theorem, we gave the existence of fixed points and obtained the existence of traveling wave solutions of the model.
[1] | A. J. Lotka, Elements of physical biology, Nature, 116 (1925). https://doi.org/10.1038/116461b0 doi: 10.1038/116461b0 |
[2] | V. Volterra, Fluctuations in the Abundance of a species considered Mathmatically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[3] | H. D. Landahl, B. D. Hanson, A three stage population model with cannibalism, Bull. Math. Biol., 37 (1975), 11–17. https://doi.org/10.1016/S0092-8240(75)80003-6 doi: 10.1016/S0092-8240(75)80003-6 |
[4] | K. Tognetti, The two stage stochastic population model, Math. Biosci., 25 (1975), 195–204. https://doi.org/10.1016/0025-5564(75)90002-4 doi: 10.1016/0025-5564(75)90002-4 |
[5] | G. B. Zhang, W. T. Li, G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modell., 49 (2009), 1021–1029. https://doi.org/10.1016/j.mcm.2008.09.007 doi: 10.1016/j.mcm.2008.09.007 |
[6] | X. Zhang, R. Xu, Global stability and travelling waves of a predator-prey model with diffusion and nonlocal maturation delay, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3390–3401. https://doi.org/10.1016/j.cnsns.2009.12.031 doi: 10.1016/j.cnsns.2009.12.031 |
[7] | X. Zhang, R. Xu, Traveling waves of a diffusive predator-prey model with nonlocal delay and stage structure, J. Math. Anal. Appl., 373 (2011), 475–484. https://doi.org/10.1016/j.jmaa.2010.07.044 doi: 10.1016/j.jmaa.2010.07.044 |
[8] | G. B. Zhang, X. Q. Zhao, Propagation phenomena for a two species Lotka-Volterra strong competition system with nonlocal dispersal, Calc. Var. Partial Differ. Equations, 59 (2020), 1–34. https://doi.org/10.1007/s00526-019-1662-5 doi: 10.1007/s00526-019-1662-5 |
[9] | G. B. Zhang, W. T. Li, Nonlinear stability of traveling wave fronts in an age-structured population model with nonlocal dispersal and delay, Z. Angew. Math. Phys., 64 (2013), 1643–1659. https://doi.org/10.1007/s00033-013-0303-7 doi: 10.1007/s00033-013-0303-7 |
[10] | G. B. Zhang, F. D. Dong, W. T. Li, Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1511–1541. https://doi.org/10.3934/dcdsb.2018218 doi: 10.3934/dcdsb.2018218 |
[11] | F. T. Wang, R. Z. Yang, Spatial pattern formation driven by the cross-diffusion in a predator-Cprey model with Holling type functional response, Chaos Solitons Fractals, 174 (2023), 113890. https://doi.org/10.1016/j.chaos.2023.113890 doi: 10.1016/j.chaos.2023.113890 |
[12] | F. T. Wang, R. Z. Yang, X. Zhang, Turing patterns in a predator-prey model with double Allee effect, Math. Comput. Simul., 220 (2024), 170–191. https://doi.org/10.1016/j.matcom.2024.01.015 doi: 10.1016/j.matcom.2024.01.015 |
[13] | F. T. Wang, R. Z. Yang, Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in prey, Int. J. Biomath., (2023). https://doi.org/10.1142/S1793524523500973 doi: 10.1142/S1793524523500973 |
[14] | Y. X. Ma, R. Z. Yang, Hopf-Hopf bifurcation in a predator-prey model with nonlocal competition and refuge in prey, Discrete Continuous Dyn. Syst. Ser. B, (2023). https://doi.org/10.3934/dcdsb.2023193 doi: 10.3934/dcdsb.2023193 |
[15] | K. Hong, P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83–103. https://doi.org/10.1016/j.nonrwa.2012.05.004 doi: 10.1016/j.nonrwa.2012.05.004 |
[16] | X. F. Xu, M. Liu, Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures, J. Differ. Equations, 269 (2020), 8370–8386. https://doi.org/10.1016/j.jde.2020.06.025 doi: 10.1016/j.jde.2020.06.025 |
[17] | J. Li, X. H. Liu, C. J. Wei, The impact of role reversal on the dynamics of predator-prey model with stage structure, Appl. Math. Model., 104 (2022), 339–357. https://doi.org/10.1016/j.apm.2021.11.029 doi: 10.1016/j.apm.2021.11.029 |
[18] | G. T. Skalski, J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type-Ⅱ model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO; 2 doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 |
[19] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866 |
[20] | D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, J. Animal Ecol., 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298 |
[21] | D. M. Luo, Q. R. Wang, Global bifurcation and pattern formation for a reaction diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses, Nonlinear Anal. Real World Appl., 67 (2022), 103638. https://doi.org/10.1016/j.nonrwa.2022.103638 doi: 10.1016/j.nonrwa.2022.103638 |
[22] | S. Khajanchi, S. Banerjee, Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response, Appl. Math. Comput., 314 (2017), 193–198. https://doi.org/10.1016/j.amc.2017.07.017 doi: 10.1016/j.amc.2017.07.017 |
[23] | H. Cheng, R. Yuan, Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion, Appl. Math. Comput., 338 (2018), 12–24. https://doi.org/10.1016/j.amc.2018.04.049 doi: 10.1016/j.amc.2018.04.049 |
[24] | C. Carrillo, P. Fife, Spatial effects in discrete generation population models, J. Math. Biol., 50 (2005), 161–188. https://doi.org/10.1007/s00285-004-0284-4 doi: 10.1007/s00285-004-0284-4 |
[25] | L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differ. Equations, 197 (2004), 162–196. https://doi.org/10.1016/S0022-0396(03)00170-0 doi: 10.1016/S0022-0396(03)00170-0 |
[26] | J. Coville, J. Dávila, S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equations, 244 (2008), 3080–3118. https://doi.org/10.1016/j.jde.2007.11.002 doi: 10.1016/j.jde.2007.11.002 |
[27] | Y. Kuang, S. A. Gourley, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. Math. Phys. Eng. Sci., 459 (2003), 1563–1579. https://doi.org/10.1098/rspa.2002.1094 doi: 10.1098/rspa.2002.1094 |