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Abstract: In this paper, we considered a delayed predator-prey model with stage structure and
Beddington-DeAngelis type functional response. First, we analyzed the stability of the constant equi-
librium points of the model by the linear stability method. Furthermore, we considered the existence
of traveling wave solutions connecting the zero equilibrium point and the unique positive equilib-
rium point. Second, we transformed the existence of traveling wave solutions into the existence of
fixed points of an operator by constructing suitable upper and lower solutions, and combined with
the Schauder fixed point theorem, we gave the existence of fixed points and obtained the existence of
traveling wave solutions of the model.
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1. Introduction

The relationship among different biological populations is complex and very important and is an
essential part of the research on the development of ecology. Due to the prevalence and importance of
predation in nature, studying the dynamic relationship between predator and prey has always been one
of the dominant topics.

In the 1920s and 1930s, as the pioneers of mathematical ecology, Lotka [1] and Volterra [2] pro-
posed the famous Lotka-Volterra model independently, which is used to discribe the interaction be-
tween two groups composed of predators and preys:

du (1)

d\?’ ft)

dt

=au () —bu@®)v @),

=—ayv(t) + bu(®)v(z).
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Here, we assume an ecosystem that includes two groups of predators and preys. The predator survives
on prey, and the system has no population exchange relationship with the outside world. In order to
establish a mathematical model describing the system, the prey and predator population are regarded as
the basic variables, which are represented by u (7) and v (¢), respectively. The natural increment of the
prey population is proportional to the number of itself, and if the proportional constant is a; > 0, and if
the mortality rate of predator population is proportional to its own number, the proportional constant is
a, > 0, and b; > 0 and b, > 0 are positive constant. Lotka-Volterra model is a basic model to describe
the predator-prey relationship between predator and prey.

In 1975, Landahl and Hanson [3] and Tognetti [4] proposed a stage structure model and used dif-
ferent equations to describe individual behavior at different stages. In the last two decades, Zhang et
al. [5] proposed and discussed a delayed predator-prey model with stage structure and nonlocal diffu-
sion, and they studied the existence and exact asymptotic behavior of traveling wave solutions. Zhang
and Xu [6, 7] considered the predator-prey model with nonlocal delay and stage structure, and further
studied the global stability. One can also see [8—14].

Recently, Hong and Weng [15] studied the delayed predator-prey model with local diffusion and
nonlocal spatial effects, and they investigated the stability of the equilibria and the existence of traveling
wave solutions connecting the zero equilibrium point and the unique positive equilibrium point.

81/!1 62u1

85_t = D1_g2x2‘ +ayuy (x,0) = dyay (x,0) — anid (x, 1) — a7 [ G (x,3, D) ua (v, = 1) dy,
% =D 0u22 +ae™ " [V G (x,y, D)z (y.1 — T dy — daus (x, 1)
x o
—qpeats (x,1) — anu? (x,1) — ayy (x, 1) v (x,1)

; 612622 2 (X, 22U (X, 1 + muy (x,1) v

: ; azpuy (X, 1) v(x,t
_— = D — + - b 7t ’l’ — ,t +

o Yox [a2 = Doy (x, O] v (x, 1) = gesv (x, 1) 1+ muy (x, 1)

G=y)?
where G (x,y,7) = \/Aﬁe_m. The model considered the Holling II functional response function.

Although Holling type functional response functions are widely used, they do not consider the effect
of predator density on predation rate. For this reason, some scholars have proposed a ratio dependent
functional response function, and the results are also supported by many experimental facts. For results
about stage structure, we refer to [16, 17].

In 2001, Skalaski and Gilliam [18] compared the statistical data in some predator-prey systems,
and found that the predator-dependent functional response function model has a high degree of fit with
the data. The Beddington-DeAngelis functional response function is more practical in reality. This
function maintains all the characteristics of the proportional dependent functional response function
and avoids the singular behavior caused by the low density state, so it can better reflect the predator-
prey effect (we refer to [19-21] for details).

In 2017, Khajanchi and Banerjee [22] introduced a persistent prey refuge in a stage structured
predator-prey model with a ratio dependent functional response and obtained sufficient conditions for
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permanence and global asymptotic stability by constructing a suitable Lyapunov function.

dx; (1)

= ax, (t) — Bx; (t) — 61x; (1),

= Bx; (1) — 625, (1) — yx2, (D) —

dy@®  pu(1-60)x,(0)y)
dt — g(1=6)x, ) +hy(t)

o (1) 7 (1= 0) %, (1) y (1)
s -0 )+ hy ()’

- 63y (1),

where « represents the growth rate of juvenile prey. The conversion coefficient from juvenile prey to
adult prey is proportional to the existing juvenile prey, and the proportional constant is 5. y represents
the intraspecific competition rate of adult prey. d; , d,, and d; represent the natural mortality of juvenile
prey, adult prey, and predator, respectively. We introduced an adult prey shelter 6x,,, 8 € (0, 1), which
measures the strength of the prey shelter. For related work, Cheng and Yuan [23] considered the ex-
istence and stability of traveling wave solutions of Holling-Tanner predator-prey model with nonlocal
diffusion and Holling type I functional response.

The local Laplacian operator to represent the spatial diffusion phenomenon cannot accurately de-
scribe the spatial and temporal behavior of species. In fact, spatial nonlocal effects are ubiquitous in
nature. As for a biological population, it will move in a large spatial range than be limited to a small
range, which leads to the occurrence of spatial nonlocal effects. Accordingly, many researchers have
introduced convolution operators into the research models to describe the movement of individuals in
the whole space and used convolution operators to describe the spatial diffusion process (see [24-26]).

In this paper, motivated by the results in [15], we consider the influence of Beddington-DeAngelis
functional response function on the existence of traveling wave solutions of the model and consider
the stage structure of the prey population and divide the prey population into two categories: Juvenile
and adult. For many mammals, the juvenile prey is hidden in the cave and fed by their parents, so they
do not have to go out to find food; thus, we have reason to think that the juvenile prey is not at risk of
being attacked by predators. Our model is as follows:

O _ D@+au—du—a uz—&e‘”"TfJroo Gx,v,Duy(y,t—1)d
o LT 1Uy — diiy 11U oo > Y, T)uz (y, Ys
Buz (?2142 ~ d +00
o D2W+a€ ‘Tf_ G (x,y, Duy (y,t = 1)dy — dots — gre21>
x o0
: Buny (1.1)
—apuy, - —————————,
1 + mu, + wy
v v N b ) N By
— = — +ayv — by — assv* — gsesy + ————,
ot Sox2 P 2 » s 1 + muy + wy

2
where G (x,y,7) = \/47:71)” _%, % is the rate at which nutrients are converted to predators
for reproduction. u; (x,1), u, (x,7) and v(x,t) are the population density of juvenile prey pop-
ulation, adult prey population and predator population at position x and moment ¢, respectively.
ae T f_ ::o G (x,y,T)uy (y,t — 1) dy represents the number of prey species converted from juvenile to
adult at position x and moment ¢. Here, the application of nonlocal Fourier transform and convolution
shows that the function value at position x is not only related to this point, but also affected by the sur-
rounding area. T > 0 is a time delay, indicating that the change rate of the unit population at moment ¢
depends on the number of populations at moment t — 7. D; > 0, D, > 0 and Ds > 0 are the diffusion
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coefficients. a; > 0 and a, > 0 are the birth rates of juvenile prey and predator populations respec-

tively. d; > 0, d, > 0 and b, > 0 are the mortality of juvenile prey population, adult prey population

and predator population, respectively. a;; > 0 and ass > 0 are the overcrowding rates of adult prey

population and predator population respectively. g,e,u, (x, 1) > 0 and gsesv (x, ) > 0 represent capture

items of adult prey population and predator population, respectively, and m and w are positive constant.
We take the intial condition

up (x,0)=61(x)>0, up (x,1) = (x,1) >0, 6, (x,0) >0, v(x,0) =d3(x) >0, xeR, —7<t<0.

Based on the above discussion, we first study the stability of equilibrium points of the delayed
predator-prey model with stage structure and Beddington-DeAngelis functional response function us-
ing the linear stability method. Then, we establish the existence of traveling wave solutions of (1.1) by
constructing a new pair of upper and lower solutions, combined with the Schauder fixed point theorem.

2. Stability of equilibrium points
Note that the second and third equations of system (1.1) are independent of u; (x, ¢), and only related

to themselves and each other. Thus, it is sufficient to consider the last two equations on their own. For
simplicity of notation, we denote u, (x, f) by u (x, t). Then, we consider the following system:

0 i o

2 _p,2L &e‘d”r Gy, D)u(y,t—7)dy — dyu — qreru — appu* — __ P ,

ot a9x —o° l+mu+wv (2
ov ov N b ) N Biuv 2.1
— = Ds— + av — byy — assv* — qsesy + ——.

ot Soxr 7 2 > L ———

In order to facilitate the discussion of subsequent issues, we write here

O i=aeh —d, - qz€2, 2.2)
192 =dap — b2 — (gs6s. (23)

Obviously, the system (2.1) has three equilibrium points, which are expressed as

] )
Ey(0,0), El(—l,o), Ez(O,—2)~

a ass
For any constant equilibrium point (", v*), we linearize the system (2.1) in (¢, v*), and obtain

ou azbt A _d +00
i Dzﬁ + ae ‘Tf_ G(x,y,Du(y,t —1)dy — dou — qresu — 2a,,u™u
x [
BV + wBy*? Bu* + mBu*?
u

(1 + mu* + wv"‘)2 (1 + mu* + wv*)2 ’
2 Biv' +wBiv? N Bu* + mpBu*?
u

(1 + mu* + wv*)? (1 + mu* + wv*)? '

(2.4)

ov
ot

v
= DSﬁ + av — byv — 2as5v*v — gsesv +
X

The system (2.4) has a non-trivial solution in the form of (cy, c)! e (see [27] ) if and only if the
corresponding determinant of the system (2.4) coeflicient matrix is 0, where A is a complex number
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and o is a real number.

o)+ BV + wpv*? Bu* + mPu*?
(1 + mu* + wv*)? (1 + mu* + wv*)? —0
Biv' + W,Blv*2 pPu” + m,Bu*2 ’

XZ (/l’ g, u*9 V*) -

(1 + mu* + wv*)? (1 + mu* + wv)?

equal to
[N W il ki) HX (Lo, vy — P (L mu)
T (1 + mu* + wv*)? 2T (1 + mu* + wv)? 2.5)
_I_ﬁ,/a’lu*v* (1 +mu*) (1 +wv) 0 '
(1 + mu* + wv)* ’
where
1A ou' V) = A+ Dyo? — fe~ AT g D20 dr + qrer + 2apu”, (2.6)
x2 (A, 0, u" V) := A+ Dso? — ay + by + gses + 2assv*. 2.7

2.1. The zero equilibrium point

Theorem 2.1. Suppose that 9, < 0 and ¥, < 0O, then the zero equilibrium point E (0, 0) is stable;
conversely, assume that either ¥ > 0 or ¥, > 0, then the zero equilibrium point E (0, 0) is unstable.

Proof. Substituting E (0, 0) into (2.5), where u* = v* = 0, we get
Xl (/19 g, 05 O)XZ (/1’ g, O’ 0) = 0’ (28)
equal to
[ﬂ + DzO’2 - Ele_le_/lTe_DZUZT + d2 + QQez] [/l + D50'2 —ap + bz + qS€5] =0, (29)
then
A+ D20'2 - &e‘d”_”e_Dz‘TzT +d) + g6y = 0O or A+ D50'2 —ar+ by + qseés = 0.
If A+ Dyo? — ae ™ e 227’7 4 4, + gre, = 0, according to the Eq (2.2), we can get
A = —Dyo? + G TN _ g, — q2e2
= —D,0? + Ge” TP 20%T 9 —ae™ 7
= —D,0? —ae " (1 - e"”e‘DzC’zT) + 9y,
then when ¥; <0, 4; <0.
If A + Dso? — a; + by + gses = 0, according to the Eq (2.3), we can get

A = —DsO'2 +ap; — b2 — (se5 = —D50'2 + 192,

then when ¥, <0, 4, < 0.

Accordingly, if #; < 0 and 9, < 0, the zero equilibrium point E (0, 0) is stable; if either ©; > 0 or
¥, > 0, we see that there exists at least a (dy, o) satisfying (2.9) such that 4, > 0. Therefore, the zero
equilibrium point E (0, 0) are unstable. O
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2.2. The boundary equilibrium point
1?1

Theorem 2.2. Suppose that &, > 0 and ¥, + o A ~5— < 0, then the boundary equilibrium point

“12

o

. . 12
E, (%,0) is stable; conversely, assume that either ¥, < 0 or ¥, + 1 5— > 0, then the boundary
+m -
ar2

equilibrium point E, ( —L O) is unstable.

Proof. Substituting E, (ﬁ' 0) into (2.5), where u* = ;’le =u,v' =0, we get

Xl(/l,o-,ﬁ,())[/\/z(/l,(f,ﬁ,())— ﬁlu_ :Oa
+ mu

equal to

[/l + Dy — ae e 4y 4 ey + 2a12ﬁ] A+ Dso? — ay + by + gses — l’ilu_ =0, (2.10)

mu
then
A+ D20'2 — fle_drr—/l?'e_Dzo-z-r +d, + qre; + 2apu=0 or A+ D50’2 —ay+ by + gses — 16_1” _—0
mu

If A+ Dyo? — ae™ ™ e D277 4 g, + gres + 2ayu = 0, according to the Eq (2.2), we can get

~A — _ _ 2 —

A = =Dyo? + ae” T2 _ g, gres —2au
it
= —D20'2 + ae & ’”e Dyo’t —d; — qrey — 2a12a—
12

n —d Tt —Dyo? .
= —Dyo? + ae” T e DT L 9 — Ge™ T — 29,

~A — _ _ 2
:_DZO_Z_aed|T(1_e/l‘reD20'T)_ﬂl,

then when ¢¥; > 0, 4; < 0.

If A+ Ds 1'3 ‘ﬁﬁ = 0, according to the Eq (2.3), we can get
u ,31;9—1
/7.2 = —D5O'2 + ay —bz —(ses + 1’_8'_1;{15 = —D5O'2 +192 + H—lzﬂﬁ’
m_
az

LIS

then when ¥, + fr 2 <0,1, <0.

191
{llz
I

Accordingly, if ¢y > 0 and ¥, + b "‘31 < 0, the boundary equilibrium E,; ( u O) is stable ; if either

a12

RN
% <0ordh + A —1- > 0, we see that there exists at least a (4o, o) satisfying (2.10) such that 1y > 0.
”12

Therefore, the boundary equilibrium E,; (’9‘ 0) is unstable. O
L)

= < 0and 9, > 0, then the boundary equilibrium point

ass

Theorem 2.3. Suppose that 9, — lf

B

E; (0 ) is stable; conversely, assume that either ¥, — 1+“55 > 0 or ¥, < 0, then the boundary

)
as5

equilibrium point E, (O, %25) is unstable.
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Proof. Substituting E, (() )mto (2.5), where u* = 0, v* = &2 =7, we get

ass

_ v _
x1(4,0,0,v) + A —|x2(1,0,0,v) =0
1+wv
equal to
d]‘r /lT -Dyo’r 4 2 _ vl =
A+ DZO- +d, + g6y + — [ (A + Dso a, + b, + gses + 2as55v[ =0, (2.11)
1+wv
then
2 A —diT—At ,—~Dyo?T v — 2 5 —
A+ Dyo~ — ae e +d2+Q2€2+1+ — =0 or A+ Dso”—a;+ by +gses +2assv =0.
wy
If A+ Dy0? — ae™ ™™D 4 ) 4+ gre, + = = 0, according to the Eq (2.2), we can get
e 2 Vv
A = —Dyo? + ae™ e 2T _ g, — ghe, — A —
1+wy
B
~A — _ _ 2
:—D20'2+(l€ ike /l‘re Dg(r‘r_dz_qzez_ 11551ﬁl
I +w==
ass
13&
2
— _D20_2 + &e—le—/lTe—Dza' L 0] _ &e_dlq— _ a550
1+w=2
ass
B
A — _ _ 2
:_D20-2_ae le(l_e/lTe DQUT)+191_ Llssl9 ,
I+w=

ass

L2
BE
then when ¢, — 1 5 <0,4, <0.
+W
ass

If A + Dso?® — as + by + gses + 2assv = 0, according to the Eq (2.3), we can get

)
A = —D50' +a, — by — qseés — 2as5v = —D50' + 9 — 26155— = —D50' — Dy,
ass

then when 9, > 0, 4, < 0.

L)
Accordingly, if ¢ — lf“ﬁ < 0 and ¢, > 0, the boundary equilibrium E; (0 ) is stable; if either

ass
Bax
h — - % > 0 or i}, <0, we see that there exists at least a (1o, o) satisfying (2.11) such that 4y > 0.
W“SS

Therefore, the boundary equilibrium E, (O B2 ) is unstable. m|

2.3. The unique positive equilibrium point

Considering the actual background of our model, we will assume that ©#; > 0 and ¥, > O in the
following discussion, so the above three equilibrium points E, (0,0), E; (ﬁ‘ 0) E, (O ”) are non-
negative equilibrium points. Now we shall discuss the possibility of the positive equilibrium point.
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The positive equilibrium point E3 (u*, v") of system (2.1) satisfies the system

9 —apu— —P" o (2.12)
1+ mu+ wy
9y —assv+ — P _, (2.13)

1+ mu+wy

From the Eq (2.12), we have form

M+ mOu — ajppu — mau?
V=
wapu —wd + B ’

Substituting the above equation into the Eq (2.13), we can get

H + mu — apu — mapu? Biu 0
wapu —wih + 1 + mu + wy ’

% — ass

expand and simplify to get the function
@) = Ao’ + Aj® + Aru + As,
where

Ay = m*assapB + wap,

Ay = 2mayassP + 2wapfB) + mwapfd, — 2wrapfi — miassBo,

Ay = wapf + apassf + mﬁzﬂg + BB + wzﬁlﬂ% — 2massft — mwBh i, — 2wBB i,
As = B2 — assBth — wpd .

Next we shall analyze the existence of positive roots of the function f (u), and assume that f (1) =
Aou® + Aju? + Aru + Aj has a unique positive root u*. Obviously, the main part of the function f (u) is
Ay = mPassapf + wrai,Bi > 0, so we assume A = 29, — assp — wpd 9, < 0. Therefore,

f(+00) = 400, f(-0)=—co, f(0)=A3<0, [ (u)=23A0u"+2Au+A,.

The discriminant of the derivative f’ (1) is A = (24, Y —4x3A404, = 4A% —12A0A,, let Ay = A% —3ApA,,
thus A = 4Ay. The system (2.1) has the unique positive equilibrium E5 (u*,v") if and only if the
function f (1) has a unique positive root u*.

1) If Ay > 0, then the function f (u) has two zero roots u; and u,, which are equivalent to

:—Al—\/A_o 4 :—A1+\/A_o

i 34, = 2 34,

(a). If Ay >0and A, > 0, then u; < u, <0, f(u) is increasing in [0, +o0). If f(0) = A3 < 0, then
f (1) = 0 has a unique positive root; if f(0) = A3 = 0, then f («) = 0 has no positive root.

(b). If Ay > 0and A, <0, then u; < 0, u, > 0, f (u) is decreasing in [0, u,), and is increasing in
[ts, +00). Since f(0) = A3 <0, f (u) = 0 has a unique positive root.
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ﬁ f(u)

(a) Ay >0and A, >0

LORN

e

(b) A;>0and A, <0

o

f(u)

(c) Ay <0and A, <0

(d) Ay <0Oand A, >0

f

(u)

ty| My

;

f(w)

(e) Ay =0and A, <0

Figure 1. Images of f («) and f” (1) when A > 0.

(c). fA; <0and A, <0, then u; <0, uy, > 0, f(u) is decreasing in [0, u,), and is increasing in
[t, +00). Since f(0) = A3 <0, f (u) = 0 has a unique positive root.

(d). If Ay < 0and A, > 0, then u; > u, > 0, f(u) is increasing in [0, u;) and [u,, +00), and is
decreasing in [u, uy). If f(0) = A3 <0, f(u;) <0, f(uy) <0, then f(x) = 0 has a unique
positive root; if f(0) = A3 =0, f(u;) > 0, f(up) = 0, then f (u) = 0 has a unique positive
root ; otherwise, f (1) = 0 has two positive roots or no positive roots.

(e). f Ay =0and A, <0, then u; <0, up > 0, f (u) 1s decreasing in [0, u,), and is increasing in
[12, +00). Since f(0) = A3 <0, f (u) = 0 has a unique positive root.

2) If Ag <0, f(0) = A3 < 0, then the function f (#) is monotonically increasing in [0, +c0), thus
f (w) = 0 has a unique positive root.
3) If Ap = 0, f(0) = A3 < 0, then the function f (#) is monotonically increasing in [0, +c0), thus
f (u) = 0 has a unique positive root.

vh |

O

f(u)

Figure 2. Images of f (#) and f” (1) when Aj < 0.

Electronic Research Archive

Volume 32, Issue 4, 2665-2698.



2674

Ty

f ,(u)"‘-,:‘:x‘ |

/J

Figure 3. Images of f (#) and f” (1) when Ay = 0.

f(u)

Summarizing the above discussion, we get the following conclusions.

Lemma 2.1. Suppose that Ay > 0, A; < 0, equation f (u) = 0 has a unique positive root u* if and
only if one of the following six conditions holds:

BI). Ay>0,A1>0A4,>0 A3 <O,
B2). Ay >0,A,>0,A,<0,A; <0;
B3). Ag>0,A;<0,A4,<0,A3 <0,
B4). Ay >0,A; <0,A, >0, A3 <0;
B5). Ay >0,A; =0,A4,<0,A3<0;
B6). A\g <0, A; <0.

(1) has a unique positive root u*, through the Eq (2.13) we can get
que p g q g

N+ mhu — apu —mapu® (9 — apu) (1 + mu) 1+ mu
v = f =
wapu — wi + wlapu-9)+8  —w4+ 2L
W —anpu
As m—gﬁ > w, that is, u* > ma%ﬁ, there exists a unique corresponding v*. Thus, the system (2.1) has

a unique positive equilibrium point E3 (u*, v*).
Theorem 2.4 (The existence condition of E3). Suppose ¥y > 0, ¥, > 0 and aj,u™ < 9 <

'f—i + au”, then the system (2.1) has a unique positive equilibrium point E5 (u*,v*), where u* > 0 is the
only positive root of f (u) = 0.

Theorem 2.5 (The stability of E3). Assume that the unique positive equilibrium point E5 (u™,v*)
exists, if aj; > m’ﬁ#ﬁ, then E5 (u*,v") is stable.
Proof. Substituting E3 (u*,v*) into (2.5), whereu® = u*, v = v*, we get
Byt (1 +wvh)

(1 + mut + wv+)?

Y (1 + mu* + wv+)?
+ﬁ,6’1u+v+ (1 +mu™) (1 +wvh)

(1 + mut + wvt)*

x1 (4 out v+

-0,

Here we introduce some representations

B+ mut) B +wh)
& (1 +mut+ wv+)2’ 72 (1 +mut + wv+)2’
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such that

~ — _ _ 2
[/l + Dyo? —ae e T L ) + ghey + 2aut + 72v+] [/1 + Dso? — ay + by + gses + 2assvt — 71u+]

+ y1yu vt = 0.
(2.14)

where yy, v2, ut, v > 0.

Due to A + D,02 — ae™ ™ e D277 L, 4 grey + 2apu” + y,v* # 0, with the help of Egs (2.3) and
(2.13), the Eq (2.14) can be transformed into

,yl,)/zu+v+
A+ Dyo? — ae~ht=11e=D20t 4 ) + ghey + 2aput + yovt

- (D5<72 —ay + by + gses + 2assv" — y1u+)

,)/l,yzu+v+
A+ Dy0? — ae~ T =Dt 4 ) + gres + 2aiput + yov*
2B 1ut 1+ mu)ut
— 1)5(7'2 + 192 + ﬁ — ﬁ )
I +mu* +wvt (1 + mut +wyt)
,.yl,yzu+v+

A+ Dyo? — ae~ht=11e=D20t 4, + grey + 2apput + yovt
+ +,+
1u wpiu'v
Bt wB )

L+ mut +wvt (1 + mut + wrt)?

—(D5O'2+192+

A = u + iw is a complex number, that is, Red = u, ImAd = w, (1,0) = (u + iw, o). The real part of
A1s Red = u < 0. Otherwise, Red = p > 0 is not established, and the counter-proof method proves as
follows.

Suppose that there exists (4, 01) = (u; + iw;, 01), u; > 0. Using Euler formula to split the real and
imaginary parts of 4. Let

A — _ _ 2
A(u,wy, o) = uy + Dzof — ae™NTHTeTDNT cog (W T) + dy + gaer + 2apu’ + YovT,

A —diT—iT —Doyt -
B (i1, wy,01) = wy + ae” e P20 gin (w1 7)

Electronic Research Archive Volume 32, Issue 4, 2665-2698.



2676

then
Aviy.utvt wut wBiutvt
0 < ——727 — —(Dso? + 9, + B + a -
A2+ B I +mut+wvt (1 +mut +wyt)
A — _ _ 2
[—ae G-t o= D2NT 008 (w1 T) + dh + gres + 2anut + yzv+] yivautvt
S —
A? + B?
+ +4,+
1u wpiu'v
—[Dso? + 9, + P + a :
I +mut+wvt (1 +mut +wyt)
~—diT _ A —diT— T ,~Dryo?T + + _ Bv*
— (—yrya™") ae ae e 17 cos (w1 T) + apu® +yv e
A%+ B?
+ +4,+
u wphiu'v
—[Dsa? + 9, + B + 2 5
I +mut+wvt (1 +mut +wyt)
+ + Bv*
aput +yvt — ———— ut wButvt
S(—)’172M+V+) . 21+mu++wv+ _ D50'2 +ﬂ2 + ﬁ + ﬁ .
A2+ B I +mut+wvt (1 + mut +wyt)
a 2u+ mpu” v ﬁ + ﬁ +.,+
U — e
(14+mu*+wvt) 2 1u wpbiu'v
=(—y1yu"v") —— —(Dso” + 9, + " -+ 5
A2+ B 1 +mu* +wy (1 + mu* + wv*)
<0,
mpBv* s ..
as a;p, > ————. This is a contradiction.
(1+mu*+wv*) . .. igeq . . . .
Consequently, assume that the unique positive equilibrium point E3 (u*,v*) exists, if a;, >
q y que p q p
mpv* +
Fe—r then E5 (u™,v") is stable. m|

3. Existence of traveling wave solutions

In this section, by using the Schauder fixed point theorem and the method of constructing upper
and lower solutions by cross iteration, the existence of traveling wave solutions of the connecting equi-
librium points Ey and E3 of the system (2.1) is obtained. The traveling wave solution of the system
(2.1) 1s a special translation invariant solution in the form of (u (x,7),v (x,1)) = (¢ (x + ct) , ¥ (x + ct)),
where the wave velocity ¢ > 0, ¢ and ¢ are wave profile functions, and the wave profile propa-
gates in one-dimensional space domain at a constant speed ¢ > 0. Substituting (u (x,1),v(x,1)) =
(¢ (x + ct), ¥ (x + ct)) into system (2.1) and replacing x + ct with z, we get

{ Do (0= e/ (0 + f> B ) (1) = @3.1)

Dsy” (t) — ey’ (1) + f5 (¢, ) (1) = 0

satisfy the following asymptotic boundary value conditions
lim (#(0,¢@0) = (0,00, lim GO, ¢0) = (@',v"),

where

f (@, 9) (1) =ae™ \/me “D”cb (t—y—cr)dy - (dr + q2e2) ¢ (1)
—co 1

Electronic Research Archive Volume 32, Issue 4, 2665-2698.



2677

) B ()Y (1)
—6112¢ (t)_ 1+m¢)(t)+Wl//(t)’
o o B ()
S5 @.9) (1) = (a2 = by = gses) Y (1) — assy™ (1) + 1+mg @) +wy (1)

3.1. The construction of upper and lower solutions of the system

In this section, we discuss the existence of upper and lower solutions. Firstly, we give the definition
of the upper and lower solutions of the system (3.1).

Definition 3.1. Let p(t) = (5 (0 ,E(t)), P (1 = ((1_5 0, g(t)), t € R be two continuous functions,
then p(t) = (a () ,E(t)) and E(I) = (? () ,g(t)), t € R are the upper and lower solutions of the
system (3.1), respectively. If there exists a finite set of points S = {s; e R,i=1,2,---,n}, where
S1 < 8o < -+ < Sy, such that p (t) and p (1) are twice continuously differentiable on R\S, and for any
t € R\S, satisfy

Dyg" (1) = cd (1) + f5 (¢ 4) (1) <0,
Dsy” (6) = e () + £5 (6, 9) () <0,

and

Dy (1) = ¢’ () + f5(.1) (1) 2 0,
Dsy” (1) = ey’ (1) + f5 (¢.0) (©) 2 0.

Now linearizing the system (3.1) at (0, 0), we obtain

+ 00 1 _i
Dy (1) — c¢’ (1) + ae™™ [ \/ﬁe Prg(t—y—cr)dy —(dr + q2e2) $ (1) = 0, 3.2)
1 .

Dsy” (t) — ey’ (1) + (a2 — by — gses) Y (1) = 0.

V2
Substituting ¢ (r) = e¥ and ¢ () = e" into the system (3.2), due to f_ J::’ \/Ml;we*mﬁe‘ﬂ(wcﬂdy =
(D1 =)t

, we get
A1 (40)=0, A(1,0)=0,

where

AL (A, ¢) = DA% —cA + et e(Did=c)r _ d, — qres,
As (A,¢) = DsA> = cA + ay — by — gses.

Lemma 3.1. If&e‘d”e(D”z‘”)T —dy — qrer > 0, let ¢ = \/4D2 (&e‘d”e(DMZ‘M)T —d, — qzez),
then the following conclusions hold.

1). If ¢ > ¢}, then Ay (A,c) = 0 has two different positive roots A, (c) and A, (c), we may set 0 <
A1 (c) < A, (¢);
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2). If0 < c < cj, then Ay (4, ¢) = 0 has no real root.

Lemma 3.2. If a,—b,—gses > 0, write ¢} = \/4D5 (ay — by — gses), then the following conclusions
hold.

1). If ¢ > ¢, then Ay (A,c) = 0 has two different positive roots A3 (c) and A4(c), we may set 0 <
A3(c) < A4 (c);
2). If 0 < ¢ < ¢}, then Ay (A, ¢) = 0 has no real root.

Proof. We regard A; (4,¢) = 0 and A, (4,¢) = 0 as a quadratic equation with one variable A, and
consider the existence of the solution of the equation according to the size of the respective discriminant

A and 0. m|
3+2V2)Bv* + .
Lemma 3.3. Assume that apu®™ > % and assvt > % hold, there exist &1 €
1+mu*t+wy 1+mu*t+wy

(0, ( V2 - 1) u*) and & € (0, %) such that

+,+ 2 + +

—61128% + (2 \/5 — 2)a12u+61 + ﬁu Y - ,B(l/t 81)V > &,
1+mut+wvt 1+mut —g)+2wv* (3.3)

Biutv* B —e) (v — &) :

l+mut+wvt 1+mut —g)+wht —g)

—a558% + 6155V+82 - > &,

where gy > 0 is a constant.
Proof. Let

gi(e) = _a12<9% + (2 ‘/§ - 2)6112M+81,
Butv* 2B (u* —g)v*t

£) =— ,
g:(81) 1+mut+wvt  1+mut —g)+2wv*
g (&) = —05585 + assv' e,

Biutv? B —e) (v — &)
gi(er) =

L+mut+wvt l+m@ut—g)+wht —g)

g1 (g1) is a quadratic function with respect to ;. The image opens down through the origin, and
the symmetry axis is x = (\5 - 1)u+ > 0, so that g; (1) is increasing in (0,(\5 - 1)u+). Thus,

g1(0) = 0 and the maximum value is max{g; (&)} = g (V2= 1)u*) = (3 -2V2)an ")’ g (e1)

is decreasing with respect to &; and the maximum value is max{g, (1)} < g,(0) = % Ac-
) ) 3+22)pvt 2 +yt .
cording to the assumption of apu* > %, then (3 -2 \5) ap Wt > Hrﬂ—:zw’ there exists

e € (O, ( V2 - 1) u+), so that g; (1) > g» (&1). The first inequality is proved.

g3 (&7) 1s a quadratic function with respect to &,. The image opening goes down through the origin,
and the symmetry axis is x = % > (0, so that g3 (&;) is increasing in (O, %) Thus, g3 (0) = 0 and the
maximum value is max{g; ()} = &3 (%) = ia55 (v*)z; 84 (&) 1s increasing in (O, ﬂ) with respect to

+ +
I O C S O
L+mut+wy* I+m(ut—¢ )+w% ’ 1+m(ut 781)+W%

&, then the maximum value is max {g4 (&)} < g4 (%) =

1s increasing for g, € (0, ( V2 - 1) u*) with respect to gy, such that

1+ mut 4+ wvt 1+m(u+—81)+w%

max{gs (&)} < g4 (g) ﬁ1u+v+ By (i — &) e
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A
I

2—-V2 +
purv P57
1 +mut+wvt 1 +mut+wvt
V2
7,31I/t+v+

1 +mut +wvt’

V2 +.

. . 2vV28,ut 2 228 . +
According to the assumption of assv* > ﬁ then }1“55 v > %, there exists &, € (0, %),
so that g3 (&) > g4 (&2). The second inequality is proved. O

For the un+ique positive equilibrium (u*,v*), we know that ¢ — aj,u™ — l+m€++wv+ = 0and ¢, —
a55v+ + Hiﬁﬁ =0, thereby
(4+2V2)pv* . B (B3+2V2)pv
1) If 191 > W hOldS, then apu = 191 Bl ——— T ———
2V2-1)Bru* + Brut 228 u*
2) If 19‘2 > T hOldS, then ass5V = 192 + TE— > rEr———
(4+2V2)pv* (2V2-1)Biu*
Remark 3.1. Suppose 9 > EEe— and ¥, > T hold, Lemma 3.3 holds.
... 3+2V2)Bv*
In addition, from aju* > (1:% we can deduce
mu” +wy
Bv* mpv* mpv*
apn >

> = 2 .
(1 +mut +woHut  (L+mut +wv)mut — (1 + mut + wot)?

mpv*

mut+wyt)?’

Asapp > m the unique positive equilibrium (", v*) is stable.

Let ¢* = max {c’f, c’ﬁ} For fixed ¢ > ¢*, take constant 7 € (1, min {2, j—f, j—;‘, %, %}), then there
are A; (ndy,¢) < 0and A; (nd3,c) <O0.

Letn > 1, g > 1 be large enough and 4 > 0 be small enough. Here ¢, € (O,(\ﬁ - 1)u+) and
& € (0, %) We write A; = A;(¢c) > 0(=1,2,3,4). The continuous functions (5(1),@0)) and
(? (v, v (t)) are defined as follows:

At Azt nist
— e’ r<t, — e +qe’, t< 1,
¢ (1) = { W) = {

ut +ute™, t>1, vi+vte™ 1> 1,

vi—ge ™, > 4.

el —qe™, <, ebl —qe™', 1<y,
ut —ge, t>t;, —

It is easy to know that (5 OR (t)) and (q_b 0, v (t)) have the following properties:

1) There are two constants N; > 0 and N, > 0 such that (0,0) < @ ) ,g(t)) < (5 ) ,E(t)) <
(N1, Na);
2) lim (¢, (0) = (0,0), lim (¢(1),y (H) = lim (§(5).¥ (1)) = w*,v*);
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3) Forallt € R, ¢ (t+) < § (t-), ¢’ (t+) > ¢’ (t-).

Remark 3.2. According to the definition of (5 OR (t)) and (q_ﬁ 0, v (t)), we know

& (1) < min {e/“’, ut + u+e_’“} , W< min{ By ge™ v 4 vte” }

¢ (t) = max {eﬂ" —ge™" ut — 816_/1[} , W (1) = max {e@ — g™yt — szew} )

Remark 3.3. If g > 1 is large enough, then it is clear that t; > max {t,, t3, t4}.

442 V2)pvt 2vV2-1 +
Lemma 3.4. Assume that ¥, > % and %, > M
+mut+wy 1+mut+wy

then (5 (), J (t)) and (? (1), ﬂ (t)) are a pair of upper and lower solutions of system (3.1).

hold, and q > 1 is large enough,

Proof. We first consider 5 (1). According to the function definition, we have
— e, t<t — . B
¢(t)={ " ¢(t)£mm{el”,u++u+e A’}.
t>t

According to the definition of upper and lower solutions Definition 3.1, we want to prove that Dzan -
cd )+ for (5, ﬂ) (1) < 0, where y (1) > max {eh’ — g™t vt — gre Y }

Ifr <1, thena(t) = M, 5' (t) = 41eM and 5” (1 = /l%e”l’. In addition, we note thatif r—y—c7t < £,
thengp(t —y—ct) = e ift —y—ct > 1), then ¢ (t — y — c1) < Y1) Thus,

Dyp” () = cd (1) + f2(6.) (0)

=Dy (t) = cd (1) +ae™ " I:O ‘/47TT17'6 “’”¢(f —y=cndy - (dr + 2¢2) (1)
- B (D) ¢ (1)
—an¢ (1) - e
1 +me(t)+ wg(t)
<Dyp (1) = cd (1) +ae™ " I:O ‘/47TT17'6 “’”¢(f —y—cndy - (dr + 2¢2) (1)

<D, (/l%e“) - c(/lle””’) + ae Tt (D1 —e)r _ (dy + qre;) &M
:e/h[ (Dz/?.% - C/?.l + &e‘d”e(DMz_M)T - d2 - quz)

:e/lltAl (A1,0)

=0.

If 1> 11, then ¢ (1) = u* + e here Y (1) 2 v* — £, ¢ (1) = —Au'e™" and ¢ (1) = Pu*e™". In
addition, we note thatif t —y — ¢t > 1, then ¢ (t —y — 1) = u* + ute =D, if t —y — c7 < 1y, then
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¢(t—y—cr) <ut +ute 0 Thus,
Dyg" ()= c () + /> (6. 9) ®)
:DZE'/ (1) — cE’ (1) + ae™ ™ f )
B (1) Y1)
1+ me (1) + wyy (1)
<D, (/lqure_A’) —c (—/luJ'e_ﬁt) +ae Tt + ae Nyt e M (D1 )T _ (dr + gre2) (M+ + u+e_’”)

2 B (u+ + u+e‘/“) /40]

+ + -t
—6112(14 +ue ) -
1 +mut +ute ) + wp (1)

A — 240 A —
=ute Y (Dz/lz + e+ aee(Dien)r _ dr — qzez) +u* (ae hT _d, — qre; — a12u+)

2

1 _2 _
\/me Prg(t—y—cr)dy — (dr + q2e2) $ (1)
1

- 611252 () -

B (u+ + u+e_ﬂ’) /40]

2 —/l 2 —2ﬂ
—2a,, (W) e —ap (') e - 1 +mut + ute) + wi (f)

B (u+ +utet ) Y (1) Butvt
— +—/ltA e ) +\2 At _ \2 -2 _ =
ure A (=40) = 2an (W) e @ (W) e 1 +mu* +ute )+ W%(Z‘) 1+ mu* + wyvt

B(1+e )y (0 Bt
:+—/UA ] -2 +1_,,* +—2/lt+ — _ .
we A (=40 = 2aput] —ut apuTe I +m@u* +ute )+ wy (6) 1+ mut +wyv*

According to the premise assung)tion, A (0,¢) = 2aput =9 - 2aput = % - amf < 0 can be
obtained, so there is a constant 4; > 0, which makes A; (-4, ¢) — 2a,u™ < 0 for VA € (O, /11).

- + =211 B(1+e )y pvt + Y
Let I; (A,1) := ajpute™ + T s ) rwg@  Trmae where ¢ > t; and g(t) > v —ge ™ >0.
B(1+e~)y(0)

e GEvp e is increasing with respect to ¥ (1), thus

ﬁ(l + e"”) (v+ - sze‘”) Bt

l+m@u* +ute) +wOt —ge ) 1 +mut +wyt

I (4,0 > a12u+e_2/1’ +

Here t > t;, (t; < 0). Therefore, ¢ is divided into ¢ € [#;,0] and ¢ > O for discussion.
If t € [#1, 0], from the hypothesis we know that

B (1 + e‘”) (V+ - aze‘ﬂ’) Bv*

I (At Za]2u+e_2/“ + —
(A.1) 1+m@ut +ute) +wOt —ge ) 1+ mut +wyt

BN g

2anpi’ + 1 +m@ut +ute ) +wt — ge ) 1+ mut + wvt
(2 +2 \5),8\/* B (1 + e‘”’) (v+ - sze‘/“)

>1 +mut+wvt 1 +m@ut +ute ) +wht — ge )

>0.
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Ift > 0, here &, € (O, %), we have that

B (1 + e"”) (v+ - sze‘/“) ﬁ(l + e‘/“) (v+ - 826_/1[)
1+m@u* +ute )+ wt —ge ) z 1 +mut +ute )+ wht —ge ),
B (1 + e‘”’) %

S 1+ mut (14 e )+ w%

min

> 0.
- v 20 p(1+e)T - -
Since ajute and + are decreasing about the variable r on t > 0, furthermore,
l+mu+(l+e‘/“)+w"7
2ﬁ(v+ —82) Bv* (2+2 \/E)ﬁv" 2,B(v+ —82)
_ + _ _
11 (/l’ O) = anu + 1+2mut+w(vt—g7) 1+mut+wyt > 1+mut+wvt + 1+2mut+w(vt—g3) > 0 and Il (/1’+OO) - 0’

then 1, (4, ¢) > O for VYt > ;.
In consequence, § satisfies the upper solution definition, that is, D¢ (£) —cg (1) + f> (5, ﬂ) (t) < 0.
Next we consider i (f). According to the function definition, we have

, U (t) < min {em +ge™ vt 4 v+e_/"} .

lﬁ(l) = + ,—At

— B+ g™, 1<t
vi+vte™, t>bh

According to the definition of upper and lower solutions Definition 3.1, we want to prove that DJU (-
' )+ fs (5 J) () < 0, where ¢ () < min {el”, ut + u*e‘”}.
Ift < 1, then Y () = ™ + ge™, here ¢(r) < eV, ¥ (1) = Aze™ + gnize™ and ¥ () =

2 Azt 212 nlst
Aze™ + g A5e™'. Thus,

Dsy” (0) = e () + f5 (6. 9) (0)
Big (1) (1)
1+ ma¢ (t) + wi (1)
<Ds (/lge@ + qnz/lge%’) —c (/136’13’ + qn/lge"’“’) + (ay — by — gses) (623[ + qe%’) — ass (613’ + qe"’m)2
Brett! (eﬂ” + qe’m’)

1 + met’ + w (e + gers!)

=Dsg” (1) = & (t) + (a2 — by — qses) & (1) — assy- (1) +

2
=™ (D5/1§ —cl3+a, — b, — q565) + ge™! (D5772/1§ —cnl3 +a, — by — qses) — ass (613’ + qe”@)
,316/1”(“3”‘16"‘3’)

1 + met’ + w(eb! + gers!)

Byehi(e5+qes)

1 + meh! +w (eb! + gemst)

2
=e"'As (A3, €) + g€ Ag (05, 0) — ass ("' + ge™') +

<ge™'A, (s, ¢) + Bret! (ew + qe’“ﬁ)
=Mt [qu (N3, ¢) +’816(/11+/13—n/13)t + Qﬁleﬂlt]
<e™{q[ Ay (s, 0) + Bre™ | + .
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Here g > 1 is large enough, then —#, > 0 is also large enough. ¢ [Az (nAs,c) + ,816""] + 3, is increas-
ing about the variable ¢t on r < 1, for V¢ < t,, so there exists ¢ [Az (ns,c) + ﬁ]eﬂ”] + B < 0, thus
e {q [ Ay (s, 0) + BreVt| + B} < O for Vi < 1.
Ift > t, then ¥ (t) = v +vte ™, here ¢ () < u™ + ute™, ¥ (t) = — e and ¢ (1) = Lvre .
Thus,
Dsy” (1) = () + f5(6.9) (1)
Big (1) (1)
1 +me () + wi (1)
<Ds (/lzv+e_’”) —c (—/lv+e_’") + (ar — by — gses) (v+ + v+e_’“) — ass (v+ + v+e_’l’)
Bi (u+ + u+e‘/“) (v+ + v+e_/”)
L+ mut+ute ) +wOt +vre )
=yte™ ¥ (D5/12 +cld+ar—b, — q565) + v (ar — by — gses — assv?) = 2ass (vV) eV — ass (v) e
Bi (u+ + u*e‘/“) (v+ + v*e"”)

1 +mu* +ute ) +w @t +vte )

=Dsy’ (t) — e (1) + (ay — by — gses) i (1) — assy (1) +

2

2
Butvt (l + e"”) Bitvt
l+mut(1+e ) +wvt(1+e ) 1 +mut+wrt
2
Biut (1 + e‘”)

1+t (1 +e ) +wyt (1 +e )

=vTe ™A, (=, ¢) — 2ass (v+)2 e — ass (v+)2 e M 4

=v'e ™ [Ar (=4, ¢) — assvt] = v* |assvTe™ + assvte

Biu?
1+ mut +wvt |
+ . Y .
Because of A, (0, ¢) — assvt = % — assv™ = _mful# < 0, there is a constant A, > 0, which makes
Ay (=A,¢) — assv* < 0 for VA € (0, ).
2
. + =t -2 Bt (1+e7) Biu*
Let I, (A,1) := assvie™ + assvte T (e (1re ) T Tomar s we have that
ﬁ +(1 —At 2
1u ( +e ) 1Lt+
L (A, 1) =assvte™ + assyte VM — - — + P
l+mut(1+e ) +wvr(1+e )  1+mut+wv*
2
+ —At

Biu (1 +e ) ot

>assvTe ™ + assyte Y — B
1 +mut+wvt 1+ mut+wvt

+
- - u - -

—assvte At +assvte 21t _ B (28 o, 2/11)

1+ mut +wv*

Y + 26\u” . Bt u
=e assV’ — —————— |+ |assy" — ———— e .
1 + mut + wvt 1+ mut +wv*

. . . 228, ut .
According to the premise hypothesis, assv™ > ﬁ can be obtained, thus I, (4,) > 0 for Vt > t,.

In consequence, W satisfies the upper solution definition, that is, D5J” - cJ’ O+ fs (5 J) (1 <0.
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We next consider ¢ (f). According to the function definition, we have

4t _ nAt
e qge 1<tz _
{ ’ , ¢ () > max {em —ge™" ut —gle A’}.

ut —ge ™, t>t

According to the definition of upper and lower solutions Definition 3.1, we want to prove that D,¢" (r)—
e’ (1) + f (?, J) () > 0, where ¥ (1) < min{ BT 4 e vt +vTe A’}.
If < 15, then ¢ (1) = eVt — ge™! here y (1) < e + ge™™, ¢ = Aet’ — gnae™! and MOE

e — g 2e"™. In addition, we note that if f—y—c7 > 13, then ¢ (1 — y — c1) = 107D — genhili-y=cn);
ift—y—cr<t3,theng(t—y—cr) > M7 — gt =y=¢)_ Thys,

Dyg” (1) = g/ (1) + f2 (9.1 (1)

=Ds¢" (1) — c¢’ (1) + e eI (1 —y - ct)dy — (do + 1202 § (1)

d\ T 1
Iw VarnDt
B (D¢ (1)

1+ me (1) + wip (1)

>D, (/l%el” - qn%l%e'””) (/lle " —gnd, e"ﬂ”) + ae‘d”f 47rD17'

> BN =g )u @)

At Ayt At Ayt
~ (@) (e -4’ ) s (e — e ) 1+ m(eht — ge"it) + wiy (t)
= (Dz/lf —cAy + ae~ 7 (Prdi=ci)r _ dy — qzez) — ge™! (Dznz/lf —cna; + ae= (D1 di—eni)r
—dy — gres) — s (e/ht B qen/m)Z B ﬁ(e/llt _ qeﬂﬂlt) w(l‘)_
1 + m(el’ — gen™') + wiy (1)
B et = ge™)y (1)
1+ m ettt — genh1’) + wip (t)

) ﬁ(e/lll‘ _ qel]/llt)( A3t + qer]/ly)
At nAit At _ nAit\” _
2e"Ay (A1, ¢0) — g™ AL (g, 0) - a12( " —ge™ ) T3 (el — ety + w (e + o)

—and® (1) -

2

_ . -
T (efll(f—) cT) _ qeﬂfll(f y CT)) dy

2
=M AL (A1,0) — g™ "D (1, 0) — an (€1 — g )~

> — ge™'A; (A1, ©) — appe*t’ — et (e@ + qe"’“’)

— _ Mt [qu Ay, ) + alze(ul—rm)z +ﬁe(/11+/l3—n/ll)t n qﬁe“”%_’”‘)’]
> — M [qu (nd,0) +an+B+ qﬁe(ﬂwnﬂs—nﬂm]

=— M {q [Al (nd;,c) +,Be(ﬂl+’ﬂ3_"’“)t] + (a2 +ﬁ)} -

Here g > 1 is large enough, then —#3 > 0 is also large enough. ¢ [A1 (ndi,c) + Beu”’”r’”l)t] +(ap +p)
is increasing about the variable ¢ on ¢ < t3 for YVt < 13, so there exists g [A 1 (nAy,c) + ,86“‘*’7/13"“')’] +
(aip + B) < 0, thus —e™? {q [AI (A1, ) +ﬁe(’l‘+’7/13””‘)’] + (ap +,8)} > 0 for Vt < t3.

If t > t3,then ¢ () = u* — g1, here ¢ (f) < v + vte ™, $'(1) = Agre™ and ¢ (1) = Age. In
addition, we note that if # — y — ¢t > f3, then plt—y—ct)=u"~ g1 =D if t —y — cT < 13, then
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¢(t—y—ct)>ut —ge =) Thus,

Dyg” (1) = c¢’ (1) + f2 (9. 9) (©)

=Dy¢” (t) — c¢’ (1) + ae™ " _; \/47TT1T6 4le¢ (t—y—cr)dy —(dr + q2e2) ¢ (1)
B (D¢ (1)

1+ mg (£) + wip (1)

>D, (—/lzsle_”) -c (/lsle_/”) +ae Tyt — &e_d]Tsle_A’e(DMerM)T — (dr + gre7) (u+ - sle_/“)
B(u = e1e™) g (1)

1 +mut —ere )+ wi (1)

=—ge” (szlz + el + ae (Pt ed)r _ dy — qzez) +u (ae —dy - qzez) +2aputee™
B(ut - e1e) g (1)

1 +m@u* —ee) + wi (1)

s P Bl —ae)yo

—At + —At -
=—ge A (=4,0) + 2apuTee" —apeje " + —
’ L+mut +wvt L mut — g1e7) + wip (1)

- alzfz () -

2
—ap (u+ —gle A’) -

_ augze—zzz

:816_/1[ [—Al (—/1, C) + (4 -2 \/z) 6112M+]
Butv* _ B (u* - 816_11) g @

+ (2 V2 - 2) aputsie™ —apete ™ + T - (1)
1 + mut +wv 1+ m(ut —ee) +wy (1)

According to the premise assumption, we can obtain that —A; (-4,¢) + (4 -2 \/5) aput = -9 +
4-2V2)aput = (3-2V2)aput - % > 0, so there is a constant ;113 > 0, which makes
1+mu*+wy
—A; (=A,¢) + (4 = 2V2) appu > 0 for ¥V € (0, 3).
- — utyt ut—g1e~ )y (t)
Let 5 (A,1) = (2 V2 - 2) aputere™ —apete M + 1+£u++wv+ - 1+5Eu+_£'le_mgf;%), we have that
+ Blut —ere™)y (1)
L1 = (2 V2 - 2) apuee™ —apele ™ + ﬂu+v - - ( ) —
1+ mut +wy 1 +m@ut —ee ) + wy (1)
+t ,8(1/!+ - sle‘/“) (v + v+e‘/“)
> (2V2 = 2)aputee™ — apee ™ + puy — ,
( ) e 281 1+mut+wvt  1+mut —ge)+wht +vte )
wtvt 28(ut—e )t
where 7 > 3. Therefore, I3 (1,0) = —ape? + (2 V2 - 2) apute, + 1+Zu++wv+ - 1+mﬂ(£+_81)122wv+.
From Remark 3.1, we can see that ¢; > %is established, there is g, € (O, ( V2 - 1) u*),
. ut vt 26(ut—e; )v*
making —alzsf + (2 V2 - 2)a12u+81 + 1+£u++wv+ - 1+mfg+_81;32w+ > gy > 0. We have 15 (4,0) > 0, here

g € (O, ( V2 - 1) u*). We can choose a small enough 6; > 0, such that 6" := &, + ¢, for Vo € [g, ]
satisfying

Luv* B Bt —06)2vt +0) S £ > 0.

—apd®+(2V2-2 o+
a ( )algu l+mut+wvt 1+m@utr-0)+w@vt+06) 2
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We want to prove that I5(4,¢) > 0 for V¢ > t3. Here t > 13 (t3 < 0), therefore, 7 is divided into
t € (t3,0] and ¢ > O two parts to discuss.

If t € (13,0], let v(r) := g1e™, u(¢) := v + vte Y. Select 13 > 0 small enough such that for any
given A € (0,13), we have

v(t;) = g7 = 67, w(tz) =vt +vte™s = 67,

which leads to &) < v (1) < 6" and & < pu(¢) < 6*. So we get I3 (4, 1) > 0 for Vz € (23, 0].
If > 0, here ——2 (a1 )0

1+m(u+ —£) e‘ﬂ’)+w$(t)

< 0, based on the assumption that A > 0 is small enough,

—

B (u+ - 81e‘”)J(t) ' _ —Be ey (1) [1 + Wy (t)] -B (u+ - gle‘”’) (@) [1 +m (u+ - gle‘ﬁ’)]

1+ mut —gre ) + wi (1) , - [1 +m@ut —ge ) + WJ(I)]2

b

B(ut—e1e™)y(1)

1+m(u+ —£ e”“)+w$(t)
variable 7 on ¢ > 0; the function (2 V2 - 2) aputere ™ —apete " > 0 is decreasing about the variable
tont > 0. We can get that

where ¥ (1) > 0 and ' (r) < 0. Thus we have the function —

is increasing about the

5 (1,0) >0, I; (A, +00) = 0.

So we get I5(A,¢) > 0 for V¢ > 0. Thus, I5(4,¢) > 0 for V¢ > t;. In consequence, ? satisfies lower

solution definition, that is, Dzi&” (- cq_b’ O+ f (q_ﬁ, J) (1) > 0.
We finally consider y (r). According to the function definition, we have

Y ,  Y(t) > max {e’“’ — g™yt — sze_’“}.

6/131 _ qen/l:;t, < t4
vi—ge ™, t>t

According to the definition of upper and lower solutions Definition 3.1, we want to prove that Dsy/”’ (¢)—

ey’ (D) + fs (?, ﬂ) (t) > 0, where ¢ (1) > max {e“’ — g™yt — 8le’ﬁt}.
If 1 < 14, then Y (1) = e™' — g™, Y/ (1) = 3™ — qnAze™ " and Y (1) = et — g 3™, Thus,

Dsy” (1) = ey’ (1) + £+ (6. ) (0)
Big () (1)

T+ me (1) +wi (1)

=Ds (/lgeh’ - qnz/lge%’) —-c (/136/131 - qn&e”’“’) + (ay — by — gses) (eh’ - qe”h’)
B (1) (e = gem)

1+mg (1) +w (e — ge)

=V (D5/l§ —cl3+a, — by, — q5e5) — g (D5172/l§ —cnds +ay — by — qses)

P16 (1) (¥ — gem)

1+ me (1) + w(eb' — gen")

:Dsg" () - Cf () + (a2 — by — gses) Y (1) — Clssf2 (@) +

2
— ass (613’ - qe”ht) +

2
— ass (613’ - qe'm’) +
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> — g™ Ay (A3, ©) — asse™™

>e™ [—gA; (A3, ¢) — ass]
>0,

here n7 € (1, min {2, j—f, fl—:, A‘A—Jrlﬂ‘*, A‘A—J;’“}) and ¢ > lis large enough .

If t > t4, then () = vt —gre, here ¢ (t) > u* —g1e”, Y () = dgmvte ™ and ¥ (1) = =g vte ™,
Thus, N B N N
Dsy” () = e/ (0) + f5 (6. 9) ()
Bio Oy ()
1 +m¢ (1) + wi (1)
>Ds (—/1282V+€_/lt) —c (/lsva“e_}") + (ay — by — gses) (v+ — 82€_M) — ass (v+ - sze_’”)z
Bi (u+ _ 816_’”) (v+ _ 828—/11)

1 +m@ut —get)+wht — ge )

=Dsy”" (1) — e’ (1) + (a2 — by — gses) Y (1) — assy” (1) +

At At

_ 2 _ _
=—ge (D5/12 +cl+ay —b, — qses) +V" (ar — by — gses — assv') + 2asse, (V)" eV — ass (€)% 72
Bi (u+ _ 816_’U) (v+ _ Sze—/lt)

1 +mut —ge ) +wht — ge )

ﬁ1u+v+

= - 826_/UA2 (_/l, C) + 205582 (V+)2 e_’lt — ass (82)2 e—Z/lt -
1 +mut +wv

Bi (u+ _ gle—/lt) (V+ _ 826_/1[)

1 +m@ut —ge ) +wt — ge )

u _ ﬂl M+ V+

1+ mut + wyt

At

=ge" [Ny (=, ¢) + assv'] + asse; (V+)2 eV —ass (8))" e?

B (u+ _ gle—/lt) (V+ _ 828_’“)

1+m@ut —ge ) +wt — ge )

Biut

o > 0, there is a constant 44 > 0, which makes
+mu™+wyv

Because of —A, (0,¢) + assv® = =t + assv* =
—As (=1,¢) + assv* > 0 for VA € (0, 44).

— +\2 -t _ 2 20 _ __Puutvt Bi(ut—e1e ) (v —e2e™)
Let Iy (A4,1) := asse; (V)" e ass (&2)" e T e T Tem(ut—ere W) (o —oae

Therefore, Iy (1,0) = —ass&3 + assvte, — purvt | Pee)(e) g I, (A, +00) = 0.

1+mu*+wv* l+m(ut—g1)+wvt—g3)

M there are g€ (O,(\/z — 1>u+) and & € (0 v*),

1+mu*t+wvt 2 > 2

making —asse2 + assvte; — L 4 Be)0Toe) o 0 We have that Iy (4,0) > 0, here

1+mu*+wv* l+m(ut—e)+w(vt—g7)
g € (O, ( V2 - 1) u*) and &, € (0, %) We can choose a small enough §, > 0 such that 6™ := &, + 9,
for Vo € [&,,0""] satisfying

y: where t > t4.

From Remark 3.1, we can see that 9, >

Biutv* N B —e) (" -0)

> 0.
l+mut+wvt l+m@u —g)+wht=9)

—a5562 + a55v+6 -

We want to prove that I, (4,¢) > O for V¢ > t,. Here t > 1, (t4 < 0), therefore, ¢ is divided into
t € [t4,0] and ¢ > O to discuss.
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If t € (#,,0], let v (¢) := e,e” . Select FL > 0 small enough such that for any given A € (0,:1'4), we

have v (t;) = g, = §*, which leads to &, < v (f) < 6**. So we get I; (4,1) > 0 for YVt € (14, 0].

+_ —At +_ —At
If t > 0, here G A )1 e 2 > 0, according to the assumption that 4 > 0 is small enough,
1+m(u+—ale ‘)+w(v+—aze 4’)

ﬁl (u+_81 e—,it)(‘;r_sze—ﬂt)
1+m(lfr -1 e’”)+w(\fr —gre

—ass (&) e > 0is decreasing about the variable 7 on r > 0. We can get

we have the function ) is increasing about the variable ¢ on ¢ > 0; the function

ass&; (V+)2 et

14(2,0) > 0, 14 (A, +00) = 0.

So we get Iy (A,¢) > 0 for V¢ > 0. Thus, I, (4,t) > O for V¢t > #;,. In consequence, ﬂ satisfies the
following solution definition, that is, Dsy” (1) — ey’ (1) + f5 (¢.4/) (1) 2 0.

Let A = min {11,12,13,14}, select A € ((),71), so that (5 ®) ,:Z(t)) and (? ®) ,g(t)) satisfy the up-
per and lower solution definition Definition 3.1, which proves the existence of the upper and lower
solutions of the system (3.1). O

3.2. Existence of traveling wave solutions
For u > 0, define
B, (R’ Rz) = {(‘f’, W) € C(R, RZ) 2 sup (¢, ¥) (1)] e Il oo}
teR

and

(@, ), = Sup (¢, ) ()] e,

it is easy to know that (B,l (R, Rz) e Iﬂ) is a Banach space.
Define Q = {(¢,y) € C(R,R?):0<¢(r) < Ni,O< () < Nyt € R}, let y and 1 be two con-
stants, satisfying
m > d2 + g6 + 2a12N1 +ﬁN2 (1 + a)Nz) s m > 2a55N2 + bz + gses — as. (34)
Define the operator H = (H,, H,) : Q — C (R, Rz) as

H (¢.¥) (1) = /(. ) () +m¢ (1),
Hy (¢,4) (1) = f5 (6, 4) (1) + oty (1) ,

the system (3.1) becomes the following form

(3.5)

Dy¢" (1) = c¢’ () = (1) + Hi ($, ) (1) = 0,
Dsy” (1) = e’ (1) =1y (1) + Ha (¢, 4) (1) = 0.

Let

c— ¢t +4n D, -0

2D, ’

c+ ¢t +4n D, >0

A = ,
11 2D,

12 =
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¢ — +/¢* +4n,Ds -0

2Ds ’

¢+ 2+ 4nDs -0

Ay =
21 )

22 =

In this paper, we take the above u to satisfy 0 < u < min {—Ayy, 12, — A1, A22}.
Define the operator F = (F, F;) : Q — C (R, RZ) as

— 1 t Ap1(t—5) f+°0 A12(t—s)
Fy(8,9) (1) = Dy (s =) [Ime H, (¢,9) (s)ds + e H, (¢,4) (s)ds|,

!

_ 1 Ao (1) erw An(t—s)
FZ("’"”)“)‘Ds(azz—azoume H @0 @ds+ | e Hz(¢,w><s>ds].

Define the set T = {(6.4) € Q: (¢(0).y (1) < (6 (®).y () < (1)1 (®)]. Obviously, T is not
empty and is a bounded closed convex set. The operator F = (F,, F») for ¥ (¢, %) € I satisfying
Dy Fy (6, 9)" (1) = cF1 (@, ) (1) =i F1 (9, 40) (1) + Hy (¢, 9) (1) = 0,
DsF> (¢, 4)" (1) = cF2 (¢, 9) (1) = maF2 (6, 4) (1) + Ha (¢, 4) (1) = 0.
The fixed point of F is the solution of system (3.5), which is the solution of system (3.1).
Previously, we find a pair of upper and lower solutions (5 (0, Z (t)) and (? ®),¥ (t)) of the system

(3.1) satisfying properties P1), P2 ) and P3 ). We will find the traveling wave solutions of the system
(3.1) in the profile set I'.

Lemma 3.5. For sufficiently large 1, and n, satisfying (3.4), we have

Hi (¢1,41) (1) = Hy (¢2,91) (1), Hi (¢1,¢1) (1) < Hy (¢1,42) (1),
Hy (¢1,41) (1) = Hy (¢2,41) (1), Hy (¢1,91) (1) 2 Hy (1, 42) (1),
fort e Rwith0 < ¢y (1) < ¢y (1) < Ni,O< Y (1) <y (1) £ Ns.

Proof. According to the definition of operator H = (H,, H,), we know that
Hy (¢,¥) (1) =f2(d,¢) (1) + mep (D)
2

=he 7 Io:o \/élyrliDlTe_M};mp (t—y—ct)dy — (dr + gre2) ¢ (1) — a12¢2 ()
- 10010
1 +me () +wy(t)

Hy (¢,9) (1) =f5 (6, 40) (D) + oy (D)
=(as — by — gses) Y (1) — assy* () +

+meo (),

B (D) (1)
1 +me () + wi (t)

The derivative of H; (¢, ¥) () with respect to variable ¢ is obtained

OH, (¢, ) _ By (1 + wy)
o [1 +m</)+w1,//]2

+my ().

> 0,

Oty (94)

the derivative 3

> 0, so that H, is increasing with respect to the variable ¢.
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The derivative of H; (¢, ) (t) with respect to variable i is obtained

OH, (¢, ) Big (1 + me)

= ay — by — gses — 2assy (1) + + 12,
o [1+mep +wy ]’
Since (34) knows m = 2as55N, + b2 +gses —dy > 2(155{# (t) + b2 + gses —day — %, the derivative
% > 0, thus H, is increasing with respect to the variable .

The derivative of H; (¢, ) (¢) with respect to variable ¢ is obtained

OH, (9.0) _ ~po (1 +mg)
W [1+me +wy ]

<0,
the derivative < 0, so that H,is decreasing with respect to the variable .
The derivative of H; (¢, ) (¢) with respect to variable ¢ is obtained

OH, (¢, ) [A _lef
¢ \/47rD17'

OH1(94)
0

l 1
——¢ 4Dlr¢(t —y—cT) dy] —dy) — qrey — 2a12¢ (1) - By (1 + wy) :
’ [1+m¢ +wy]

’

where |ae™!" [ 7 e >0,0 <90 <N, 0<y(0) < Ny and L2 <

¢
LY (1 + wy) < BN, (1 + wN;). Since (3.4) knows 17y > dsr + gre2+2a1,N1 + BN, (1 + wN,) > dy +qaen +

2
(14+wy) ~ —d +00 1 _LT . . (. ¥)
2a12¢ (1) + % - [ae 1 f_oo st d({t—y—cr) dyL, the derivative 'a(f‘” > 0, thus H,

is increasing with respect to the variable ¢.

In consequence, H, is increasing with respect to the variable ¢ and is decreasing with respect to the
variable ; H, is increasing with respect to the variable ¢ and is increasing with respect to the variable
. The above lemma holds. O

4"1T¢(t —y—c1)dy

Lemma 3.6. For sufficiently large 1, and n, satisfying (3.4), we have

Fi(¢1,y1) () 2 Fi (¢2,41) (1), Fi(¢1,y1) () £ Fi(¢1,42) (1),
Fy (¢1,¢1) (1) = Fa (¢, 41) (1), Fy (¢1,y1) (1) > Fa (¢1,42) (1),

Jort e Rwith0 < ¢y (1) <1 (1) < Ni,O <Y (1) <Yy (1) £ No.
Proof. According to the definition of the operator F = (F, F,) and the lemma 3.5, we know that
Fi(¢1,y1) (@) — Fi (¢2,91) (1)

1 t
"Dy (- A1) {‘[w "I H (¢1,01) () — Hy (2, 41) (5)] ds

+ f eI [Hy (¢1,41) (8) = Hy (¢2,11) (9)] ds}
>0,

thus Fy (¢1,41) (t) = Fi (¢2,41) (¢). Similarly, other conclusions can be proved. The above lemma is
established. O

Electronic Research Archive Volume 32, Issue 4, 2665-2698.



2691

Lemma 3.7. F : ' — I is completely continuous.

Proof. The proof process is divided into three parts.

Stepl. F = (Fy, F») is continuous with respect to the norm | - |, on B, (R, Rz). We first prove the
continuity of H.

We can notice that

+00 +00 1 y2
G(1,y) e+t dy < f e Iy tbl+er) dy
Ioo —o  V4rDiT

+00 2D )
— 1 6*7("‘51?,15) e(Dlﬂzﬂ‘u)Tdy
—o  V4rDiT

:e(D1ﬂ2+CN)T.

If® = (61,91, ¥ = (42.4) € B, (R.R?). We get

\Hy (¢1,41) () = Hy (2, ¥2) ()] e+
= (@1, 41) () = fo (b2, 2) (O + 1 [1 () — 2 (D] ™"
<1/ (@1, 41) () = f (@2, 2) O e+ 771 Iy () = o ()]

oo 1 2
ae_dlrf e[ (t—y—ct) = (t =y —cT)]dy — (dr + g2e2) [¢1 () — 2 (1)]

V47TD1T
ot a1 | BOU O Bh e
a |91 ® - 43 0) [1+m¢>1 (1) + Wiy (1) 1+m¢2<r>+w¢/z<r>]

e+ |¢y (0) — o (£)] 71

oo 1 o
< {&e_dﬂf e Prlg (t—y—ct) = (t —y—cr)ldy + (da + q2€2) |1 () — 2 (D)

Va4nDit
B Bé (1) Y1 (1) B B () > (1) il
sl )+ 0201100 0 - 0,01+ [ LN PO

+ 01 11 (1) — ¢ (D] e

+ 00 1 i
A —diT — iD= JMy+cT]
<ae™! N \/47TT1T6 DTNy |y (1) = ¢ (D], + (do + q22) |@ =P, + 2a1N, | = P,
+ (BNy + mBN; + BNy + mBN3 ) |® = |, + 1, |© - P,
<Ki |CD - \Plﬂ ,

where k| = ae TP L gy 4 gres + 2a,Ny + BNy + mBN; + BN, + mBN; + n;. Thus, H; :
B, (R, Rz) — B, (R, Rz) is continuous with respect to the norm | - |,.
Similarly, we can prove that H, : B, (R, Rz) — B, (R, Rz) is continuous with respect to the norm
|- -
|H ($1,41) (1) = Ha (¢, 42) (D] ™"
=15 @1,41) () = f5 (B2, 42) (D) + 112 [ 1 () — 2 ()] ™"
<Ifs (@1, 91) () = f5 (b2, 02) Ol e + 2 11 (1) — $2 (D)] ™"

= |(@ = b = gses) [¢1 () = 92 (O] = ass [} () — w3 (1)
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e 1+, 1y (£) — o (1) €

+

Bid1 () Y (2) B¢ () ¢y (1) ]

| L+ me; (1) + wi (1) 1+ mey (1) + wir, (1)

<{(az + by + gses) |1 (1) — d2 (D] + ass |¢1 (1) + ¢ (D] @1 () — ¢ ()]
:31¢1 (t) lﬁ1 (t) _ ﬁ1¢2 (t) ’702 (t) —ult] _ —ult|

L5 méy (1) + wirs () 1+n@ﬂ0+wwun”e“'“hw“” 2Ol

<(ay + by + gses) |® = P|, + 2assNy |@ = P|, + (B1N) + mBiNT + BNy + mBiN3 ) |® — P, + 1, | — ],

<k |0 -V,

+

where Ky = ap + bz + gses + 2as55N, +ﬂ1N1 + m,Blle +ﬁ1N2 + m,BlNg + . Thus H, : B,u (R, Rz) —>
B, (R, Rz) is continuous with respect to the norm | - |,,.

Next we prove that F; and F; are continuous with respect to the norm | - |, on B, (R, Rz). Because r €
R, we divide it into ¢ > 0 and ¢ < O for discussion.
For 1 > 0, due to |H, (¢1,41) (1) — Hy (¢2,42) (D] e < k1 |® — |, thus

1 (B1,41) (1) = Fi (¢, ) (0)] e

—ut [ ! —+00
ﬁgﬁ%:agl;f”“+i‘e““ﬂmw@wow—Hm@w»mMs

ke M Bl ¢ +00
< 1 f e/m(t—s) + f e/ln(t—s) + f e/hz(t—S)] e”mds | — \p|y
Dy (A2 — A1) [ U 0 1

[ 0 t +00
-k |- f A0S g g 4 AN f SIS o A f e(—/112+ﬂ)sds] @ ¥,
D2 (/112_/111) | —0 0 t
[ 2 Ap— A4
- ki . H ze(ﬂll—ﬂ)t+ 12~ A1 ]ICD—‘PIM
Dy (12 = A1) [A7, — (= A11) (A2 —p)
Ki [ 2u A — Ay

]@_%w

< +
D, (A5 — A1) ,/1%1 —w> (u=A1) (A=)
For 1 < 0, due to |H, (¢1,¥1) (1) — Hy (¢2,¥2) (D] e < &y |® = P, thus

IF1 (d1,41) (£) — F (2, 4h2) (1) €M

e_/l(_t) [ 4 +00
— f et=s) 4 f 2=
Dy (A1 = A1) [J-wo ¢

K eﬂ[ [ t 0 +00
PO L f eM=s) 4 f e2=s) 4 f e112(=8) | phlsl g ¢ |D - |
Dy (A2 = A1) [J-os ' 0 '

|H, (¢1,¢1) (5) — Hy (¢2,2) (5)|ds

- 0 00
K| f t SIS g g 4 iz f S A0S g ¢ 4 b f : oA ds] @ — ¥,
D> (A2 — A1) | —oo : 0
_ K . 2u S, A1 — A -,
Dy (A1 = ip) [ A, — 2 (A + ) (A + )
[ 2 Aip — A4
< K1 . M _ 12 11 IO — \Pllu .
Dy (A — i) [ A7, — > (A + ) (A + )

Therefore, F : B, (R, Rz) — B, (R, RZ) is continuous with respect to the norm | - |, on B, (R, RZ).
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Similarly, F» : B, (R, Rz) — B, (R, Rz) is continuous with respect to the norm | - |, on B, (R, RZ).
Step2. F (I') C T, that is, for any (¢, ¥) € I', we have F (¢,¥) € T.
Since (g& 0, v (t)) <(@@®,¥@) < (5 OR (t)), according to the Lemma 3.6 can get

Fi(¢.9) < F1(,9) < Fi (9),
Fy(¢.0) < F2(¢.0) < Fo(6,0).

Next we prove that F (5, w) < o

Without losing generality, we assume the finite point set S = {s; e R,i =1,2,...,n}, where s; <
Sy < -+ < §,, and define s = 0, 5,41 = +00.

According to the definition of Definition 3.1, we have H, (5, 1,//) (1) < —Dzau ®+ CE, () + 110 () for
teR\S.

Due to the properties P3) of (¢ (1), (1)) and (¢ (1), (1)), that is, ¢’ (t+) < @ (t-) and ¢’ (1+) >
¢’ (t—) for ¥Vt € R. Then,

t

A0 g [ [ | mEge

1 n S . N N _
:—D2 Iy = /l“) X ;L min {e/hl(t ), e/hz(t )} H, (¢, %) (l‘) ds

n

1 fs_/+| . A (l— ) 1 (I— ) — — _
S X min (e, eV =Dhd (1) + e () +me (1) |ds
Dy (A2 = i) JZ:(; ; { H[-:9 ¢ mé @)

3

=00+ : I {Z; f min {e! ¢, eI} (55.) - 9 (sf‘)]}
J= J
< (1).

In fact, through the continuity of F; (5, %) (1) and 5 (1), the above inequality holds for 7 € R.
Similarly, we can get F (?,J) > g, F; (?, ﬂ) > g, F> (5, J) < E, then ? < Fi(o,¥) < 5, ﬂ <

F, (¢,) < . Therefore, F (¢, ) € T for ¥ (¢, ) €T,
Step3. F : T’ — I is compact.
For any (¢, ) €T,

/1216/12” 4 A /lzzeﬂzzt +00 A
Fy(, ) (@t) = ——— e Hy (¢, y) (s)ds + ———— e "'Hy (¢,¥) (s)ds.
GO = B =0 (¥ Ds (oo — 1) J, 0.0
Therefore, we have
Ay et T
F (¢, ¢) ()| =sup|—— e Hy (¢, ¥) (s)ds
2 (0¥ |“ teﬂg Ds (A — A21) J-o 2 (0¥
At —+00

/1226
+—
Ds (A — A21) J;

|A21] { Ao t—plt] ft =215 Lulsl ,—uls|
<————supie e e H, (¢, 4) (s) ds
Ds (s — A1) rer. : A

e—ultl

e Hy (¢, ) (s)ds

o0

Electronic Research Archive Volume 32, Issue 4, 2665-2698.



2694

A { Aot— f+oo - _
+ ——————su 21=pl e 25l S D (0, 4r) () ds
Ds (A — ) rex ¢ , 2 (6. ¥

[21] Aorie ft e uls
S L L N—— & , 211—plt] A28 /vlla\d
" Ds (A — A21) 17, (¢ l//)lﬂ S;lelﬂg ¢ —o ¢ ¢

/l +00
— = |H su A t—plt| f e—/lzzseulslds} .
D5 (A2 — A21) 1 @9, p{ ;

If t > 0O, then

/ |21 IV AN
F; (¢, ¥) (t)|# gm \H (6,9, S,SRP {e(ﬂzl 1t Ime a8 ol 'ds}

+00
(Ao —p)t —A2s uls|
_ su e eds
* B oy @V lusup e { f }

|21 { (= [fo o .
=—— |H, (¢, sup { e 21! RIS g o P08 g ¢
Ds (o — Ay T2 9SP N :

/l +00
_ |H ( )| su { (/122—#)1 f e(#_/lzz)Sds}
D5 T a4 uSUP € t

| 21| e(ﬂzl—/l)t 1 - 6(121—#)f
=——————|H, (¢, )|, su { + }
Ds(dyp— A1) ' - ) telg =y — u— Ay

AL — (¢w)|su{ 1 }
Ds (A — A21) = te]lg Ay —

1 A2y A ]
+ |Hy (&, ¥, -
DS(/122_/121) A+ Ay — 2 (6.0,

If t <0, then

|F3 (6,0 ()], g (&, ) sup{eummr f e-meu|s|ds}

Ds (A — A21) H R oo
+00
(A2 +u)t —Axns uls|
_ su e elds
Ds (/122 - Aa1) 2 (8- 9l teﬂg{ [ }
|21] !

:—lH ( s )l su {e(’lz‘+/‘)’f e(—/121—/1)sds}
Ds (A — A21) 2. ¥ K telg —c0

/l 0 +00
+—2 —|H,( ), su { (A tu)t [ f RS g 4 f eW“ZZ)“'ds]}
Ds(dp— ) ' - o¥ teRp ¢ 0

|A21] 1
|H> (¢, )|, sup {—/121 n u}

A» 1 2
_— |H (¢ lﬁ)l su { + e(ﬂzzﬂl)t}
Ds T ,e]g Apt+p B — 2

1 /121 /122 ]
+ |H, (9, )], -
D5 (A — A1) (A +1 Ax 2@, )l

Therefore, F, : B, (R, Rz) — B, (R, RZ) is continuous with respect to the norm | - |, and the set I' is
uniformly bounded.
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Thus there exists the constant M, such that |F7, (¢, y) (t)|ﬂ < M,; Similarly, there exists constant M,

such that |F 1 (0, ¥) (t)|# < M,. Therefore, F is equicontinuous on I and F (I') is uniformly bounded.
Next we prove that F : I' — I' is compact. Define F" (¢, ¥) as follows

F(¢.9) (1), t € [-n,n],
F'(¢.9) =1 F@.¢)(n), t € (n,+00),
F(p,y)(-n),  te(-c0,—n).
For any n > 1, F" (I') is uniformly bounded equicontinuous.

Now, in the interval [—n, n], it follows from Ascoli-Arzela Theorem that F" is compact.
In addition, in B, (R, Rz) we have F" — F, as n — +oo. For any (¢, ) € T,

sup [F" (¢,4) (1) — F (¢, ) (1) e = sup |F" (¢, 4) (1) — F (¢, 40) ()] ™ < 2(Ny + N2) e,
teR t€(~00,—n) |J(n,+0o0)

n— +oo.
In consequence, F is compact. O

Theorem 3.1. Assume that the unique positive equilibrium E; (u*,v*") exists and satisfies

(4+2V2)pv* (2v2-1)Bu*

Hh>——-"—— > ,
1+ mu* +wyt 1+ mut +wyt

then for every ¢ > c*, There is always a traveling wave solution (¢* (t) ,y* (t)) connecting the equilib-
rium points (0,0) and (u™,v*) with the wave velocity c in the system (2.1). Moreover

lim ¢* () e~ = lim ¢* () e ™ = 1.
t——00

—+00

Proof. According to the Lemma 3.5, Lemma 3.6 and Schauder fixed point theorem, it can be concluded
that the operator F has a fixed point (¢* (¢) ,¢* (¢#)) in I, so (¢* (¢), 4" (¢)) is the solution of the system
(3.1).

In order to prove that the solution is a traveling wave solution, only the asymptotic conditions need
to be verified. According to the property P2) of (5 (1) ,J(t)) and @ 0, g(t)), and (? ® ,g(t)) <

(¢" (0.4 (1) < (¢ (1), ¥ (1)), we have
Tim (¢* (0,4 (1) = (0,0),
lim (¢" (1), y" (1) = (u®,v").

Because of ¢ < ¢ < ¢ and Y <y < W, then

el — g™ < ¢* (1) < eV, t < min {t;, 13},
eB — g™ <yt (1) < e + ge™, t <min{t, 14} .
Consequently,
1 — g™ DUl < el (1) < 1, ¢ < min{t;, 1},
1 —ge DB <y () e < 1+ ge™ DB, t < min{t, t;}.
The above conclusion is proved. O
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