Research article Special Issues

Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps


  • Received: 24 September 2021 Accepted: 21 October 2021 Published: 28 October 2021
  • Map-based neuronal models have received much attention due to their high speed, efficiency, flexibility, and simplicity. Therefore, they are suitable for investigating different dynamical behaviors in neuronal networks, which is one of the recent hottest topics. Recently, the memristive version of the Rulkov model, known as the m-Rulkov model, has been introduced. This paper investigates the network of the memristive version of the Rulkov neuron map to study the effect of the memristor on collective behaviors. Firstly, two m-Rulkov neuronal models are coupled in different cases, through electrical synapses, chemical synapses, and both electrical and chemical synapses. The results show that two electrically coupled memristive neurons can become synchronous, while the previous studies have shown that two non-memristive Rulkov neurons do not synchronize when they are coupled electrically. In contrast, chemical coupling does not lead to synchronization; instead, two neurons reach the same resting state. However, the presence of both types of couplings results in synchronization. The same investigations are carried out for a network of 100 m-Rulkov models locating in a ring topology. Different firing patterns, such as synchronization, lagged-phase synchronization, amplitude death, non-stationary chimera state, and traveling chimera state, are observed for various electrical and chemical coupling strengths. Furthermore, the synchronization of neurons in the electrical coupling relies on the network's size and disappears with increasing the nodes number.

    Citation: Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari. Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462

    Related Papers:

  • Map-based neuronal models have received much attention due to their high speed, efficiency, flexibility, and simplicity. Therefore, they are suitable for investigating different dynamical behaviors in neuronal networks, which is one of the recent hottest topics. Recently, the memristive version of the Rulkov model, known as the m-Rulkov model, has been introduced. This paper investigates the network of the memristive version of the Rulkov neuron map to study the effect of the memristor on collective behaviors. Firstly, two m-Rulkov neuronal models are coupled in different cases, through electrical synapses, chemical synapses, and both electrical and chemical synapses. The results show that two electrically coupled memristive neurons can become synchronous, while the previous studies have shown that two non-memristive Rulkov neurons do not synchronize when they are coupled electrically. In contrast, chemical coupling does not lead to synchronization; instead, two neurons reach the same resting state. However, the presence of both types of couplings results in synchronization. The same investigations are carried out for a network of 100 m-Rulkov models locating in a ring topology. Different firing patterns, such as synchronization, lagged-phase synchronization, amplitude death, non-stationary chimera state, and traveling chimera state, are observed for various electrical and chemical coupling strengths. Furthermore, the synchronization of neurons in the electrical coupling relies on the network's size and disappears with increasing the nodes number.



    加载中


    [1] B. Ibarz, J. M. Casado, M. A. Sanjuán, Map-based models in neuronal dynamics, Phys. Rep., 501 (2011), 1-74. doi: 10.1016/j.physrep.2010.12.003
    [2] J. Ma, J. Tang, A review for dynamics in neuron and neuronal network, Nonlinear Dyn., 89 (2017), 1569-1578. doi: 10.1007/s11071-017-3565-3
    [3] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500. doi: 10.1113/jphysiol.1952.sp004764
    [4] J. L. Hindmarsh, R. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London Series B. Biol. Sci., 221 (1984), 87-102.
    [5] N. F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E, 65 (2002), 041922. doi: 10.1103/PhysRevE.65.041922
    [6] E. M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Networks, 14 (2003), 1569-1572. doi: 10.1109/TNN.2003.820440
    [7] K. Rajagopal, S. Panahi, M. Chen, S. Jafari, B. Bao, Suppressing spiral wave turbulence in a simple fractional-order discrete neuron map using impulse triggering, Fractals, 29 (2021), 2140030.
    [8] H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 502-511.
    [9] K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B. C. Bao, Memristive Rulkov neuron model with magnetic induction effects, IEEE Trans. Ind. Inf., 2021.
    [10] M. Lv, C. Wang, G. Ren, J. Ma, X. Song, Model of electrical activity in a neuron under magnetic flow effect, Nonlinear Dyn., 85 (2016), 1479-1490. doi: 10.1007/s11071-016-2773-6
    [11] K. Rajagopal, I. Moroz, B. Ramakrishnan, A. Karthikeyn, P. Duraisamy, Modified Morris-Lecar neuron model: effects of very low frequency electric fields and of magnetic fields on the local and network dynamics of an excitable media, Nonlinear Dyn., 104 (2021), 4427-4443. doi: 10.1007/s11071-021-06494-0
    [12] K. Usha, P. Subha, Hindmarsh-Rose neuron model with memristors, Biosystems, 178 (2019), 1-9. doi: 10.1016/j.biosystems.2019.01.005
    [13] X. Hu, C. Liu, Dynamic property analysis and circuit implementation of simplified memristive Hodgkin-Huxley neuron model, Nonlinear Dyn., 97 (2019), 1721-1733. doi: 10.1007/s11071-019-05100-8
    [14] H. Bao, Z. Hua, H. Li, M. Chen, B. Bao, Discrete memristor hyperchaotic maps, IEEE Trans. Circuits Syst. I, 2021.
    [15] H. Li, Z. Hua, H. Bao, L. Zhu, M. Chen, B. Bao, Two-dimensional memristive hyperchaotic maps and application in secure communication, IEEE Trans. Ind. Electron., 68 (2021), 9931-9940. doi: 10.1109/TIE.2020.3022539
    [16] I. Hussain, S. Jafari, D. Ghosh, M. Perc, Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons, Nonlinear Dyn., 104 (2021), 2711-2721. doi: 10.1007/s11071-021-06427-x
    [17] A. Bahramian, F. Parastesh, V. T. Pham, T. Kapitaniak, S. Jafari, M. Perc, Collective behavior in a two-layer neuronal network with time-varying chemical connections that are controlled by a Petri net, Chaos: Interdiscip. J. Nonlinear Sci., 31 (2021), 033138. doi: 10.1063/5.0045840
    [18] A. E. Pereda, Electrical synapses and their functional interactions with chemical synapses, Nat. Rev. Neurosci., 15 (2014), 250-263. doi: 10.1038/nrn3708
    [19] H. Sun, H. Cao, Complete synchronization of coupled Rulkov neuron networks, Nonlinear Dyn., 84 (2016), 2423-2434. doi: 10.1007/s11071-016-2654-z
    [20] D. Hu, H. Cao, Stability and synchronization of coupled Rulkov map-based neurons with chemical synapses, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 105-122. doi: 10.1016/j.cnsns.2015.10.025
    [21] S. Rakshit, A. Ray, B. K. Bera, D. Ghosh, Synchronization and firing patterns of coupled Rulkov neuronal map, Nonlinear Dyn., 94 (2018), 785-805. doi: 10.1007/s11071-018-4394-8
    [22] M. Perc, Thoughts out of noise, Eur. J. Phys., 27 (2006), 451. doi: 10.1088/0143-0807/27/2/026
    [23] X. Sun, M. Perc, Q. Lu, J. Kurths, Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network, Chaos: Interdiscip. J. Nonlinear Sci., 20 (2010), 033116. doi: 10.1063/1.3483876
    [24] Q. Wang, M. Perc, Z. Duan, G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. doi: 10.1103/PhysRevE.80.026206
    [25] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1-101. doi: 10.1016/S0370-1573(02)00137-0
    [26] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002
    [27] K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, Effect of magnetic induction on the synchronizability of coupled neuron network, Chaos: Interdiscip. J. Nonlinear Sci., 31 (2021), 083115. doi: 10.1063/5.0061406
    [28] J. Fell, N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 12 (2011), 105-118. doi: 10.1038/nrn2979
    [29] G. Arnulfo, S. H. Wang, V. Myrov, B. Toselli, J. Hirvonen, M. Fato, et al., Long-range phase synchronization of high-frequency oscillations in human cortex, Nat. Commun., 11 (2020), 1-15.
    [30] C. A. Bosman, C. S. Lansink, C. M. Pennartz, Functions of gamma‐band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems, Eur. J. Neurosci., 39 (2014), 1982-1999. doi: 10.1111/ejn.12606
    [31] C. A. Bosman, J. M. Schoffelen, N. Brunet, R. Oostenveld, A. M. Bastos, T. Womelsdorf, et al., Attentional stimulus selection through selective synchronization between monkey visual areas, Neuron, 75 (2012), 875-888. doi: 10.1016/j.neuron.2012.06.037
    [32] P. Jiruska, M. De Curtis, J. G. Jefferys, C. A. Schevon, S. J. Schiff, K. Schindler, Synchronization and desynchronization in epilepsy: controversies and hypotheses, J. Physiol., 591 (2013), 787-797. doi: 10.1113/jphysiol.2012.239590
    [33] T. Wang, H. Liao, Y. Zi, M. Wang, Z. Mao, Y. Xiang, et al., Distinct changes in global brain synchronization in early-onset vs. late-onset Parkinson disease, Front. Aging Neurosci., 12 (2020).
    [34] F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, Chimeras, Phys. Rep., 2020.
    [35] A. zur Bonsen, I. Omelchenko, A. Zakharova, E. Schöll, Chimera states in networks of logistic maps with hierarchical connectivities, Eur. Phys. J. B, 91 (2018), 1-12. doi: 10.1140/epjb/e2017-80535-3
    [36] E. Rybalova, T. Vadivasova, G. Strelkova, V. S. Anishchenko, A. Zakharova, Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 033134. doi: 10.1063/1.5090184
    [37] M. Winkler, J. Sawicki, I. Omelchenko, A. Zakharova, V. Anishchenko, E. Schöll, Relay synchronization in multiplex networks of discrete maps, EPL, 126 (2019), 50004. doi: 10.1209/0295-5075/126/50004
    [38] Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5 (2002), 380-385.
    [39] S. Nkomo, M. R. Tinsley, K. Showalter, Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators, Chaos: Interdiscip. J. Nonlinear Sci., 26 (2016), 094826. doi: 10.1063/1.4962631
    [40] L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys. Rev. E, 90 (2014), 032905. doi: 10.1103/PhysRevE.90.032905
    [41] B. K. Bera, D. Ghosh, M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E, 93 (2016), 012205. doi: 10.1103/PhysRevE.93.012205
    [42] S. Majhi, M. Perc, D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 1-11. doi: 10.1038/s41598-016-0001-8
    [43] I. A. Shepelev, T. E. Vadivasova, A. Bukh, G. Strelkova, V. Anishchenko, New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction, Phys. Lett. A, 381 (2017), 1398-1404. doi: 10.1016/j.physleta.2017.02.034
    [44] V. Dos Santos, F. S. Borges, K. C. Iarosz, I. L. Caldas, J. Szezech, R. L. Viana, et al., Basin of attraction for chimera states in a network of Rössler oscillators, Chaos: Interdiscip. J. Nonlinear Sci., 30 (2020), 083115.
    [45] B. K. Bera, S. Majhi, D. Ghosh, M. Perc, Chimera states: effects of different coupling topologies, EPL, 118 (2017), 10001. doi: 10.1209/0295-5075/118/10001
    [46] U. K. Verma, G. Ambika, Amplitude chimera and chimera death induced by external agents in two-layer networks, Chaos: Interdiscip. J. Nonlinear Sci., 30 (2020), 043104. doi: 10.1063/5.0002457
    [47] B. K. Bera, D. Ghosh, T. Banerjee, Imperfect traveling chimera states induced by local synaptic gradient coupling, Phys. Rev. E, 94 (2016), 012215. doi: 10.1103/PhysRevE.94.012215
    [48] I. A. Shepelev, A. V. Bukh, S. S. Muni, V. S. Anishchenko, Quantifying the transition from spiral waves to spiral wave chimeras in a lattice of self-sustained oscillators, Regular Chaotic Dyn., 25 (2020), 597-615. doi: 10.1134/S1560354720060076
    [49] G. R. Simo, P. Louodop, D. Ghosh, T. Njougouo, R. Tchitnga, H. A. Cerdeira, Traveling chimera patterns in a two-dimensional neuronal network, Phys. Lett. A, 409 (2021), 127519. doi: 10.1016/j.physleta.2021.127519
    [50] G. R. Simo, T. Njougouo, R. Aristides, P. Louodop, R. Tchitnga, H. A. Cerdeira, Chimera states in a neuronal network under the action of an electric field, Phys. Rev. E, 103 (2021), 062304. doi: 10.1103/PhysRevE.103.062304
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3316) PDF downloads(262) Cited by(35)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog