Research article

A stochastic Gilpin-Ayala nonautonomous competition model driven by mean-reverting OU process with finite Markov chain and Lévy jumps

  • Received: 31 August 2023 Revised: 09 February 2024 Accepted: 19 February 2024 Published: 04 March 2024
  • The Ornstein-Uhlenbeck (OU) process was used to simulate random perturbations in the environment. Considering the influence of telegraph noise and jump noise, a stochastic Gilpin-Ayala nonautonomous competition model driven by the mean-reverting OU process with finite Markov chain and Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala nonautonomous competition model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala nonautonomous competition model was proven by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala nonautonomous competition model was discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala nonautonomous competition model was obtained. Finally, the extinction of the stochastic Gilpin-Ayala nonautonomous competition model was proved. The theoretical results were verified by numerical simulations.

    Citation: Meng Gao, Xiaohui Ai. A stochastic Gilpin-Ayala nonautonomous competition model driven by mean-reverting OU process with finite Markov chain and Lévy jumps[J]. Electronic Research Archive, 2024, 32(3): 1873-1900. doi: 10.3934/era.2024086

    Related Papers:

  • The Ornstein-Uhlenbeck (OU) process was used to simulate random perturbations in the environment. Considering the influence of telegraph noise and jump noise, a stochastic Gilpin-Ayala nonautonomous competition model driven by the mean-reverting OU process with finite Markov chain and Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala nonautonomous competition model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala nonautonomous competition model was proven by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala nonautonomous competition model was discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala nonautonomous competition model was obtained. Finally, the extinction of the stochastic Gilpin-Ayala nonautonomous competition model was proved. The theoretical results were verified by numerical simulations.



    加载中


    [1] M. Vogels, R. Zoeckler, D. M. Stasiw, L. C. Cerny, Notice sur la loi que la populations suit dans son accroissement, J. Biol. Phys., 3 (1975), 183–192. https://doi.org/10.1007/BF02309004 doi: 10.1007/BF02309004
    [2] M. Gilpin, F. J. Ayala, Global models of growth and competition, Proc. Natl. Acad. Sci. U. S. A., 70 (1973), 3590–3593. https://doi.org/10.1073/PNAS.70.12.3590 doi: 10.1073/PNAS.70.12.3590
    [3] X. H. Zhang, Analysis on Dynamics of Some Stochastic Population Systems with Lévy Jumps, Ph.D thesis, Harbin Institute of Technology in China, 2014. https://doi.org/10.7666/d.D751846
    [4] R. M. May, Stability and Complexity in Model Ecosystems, Princeton: Princeton University Press, 2001. https://doi.org/10.1515/9780691206912
    [5] X. Y. Li, X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523–545. https://doi.org/10.3934/dcds.2009.24.523 doi: 10.3934/dcds.2009.24.523
    [6] M. Liu, K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete Contin. Dyn. Syst., 33 (2013), 2495–2522. https://doi.org/10.3934/dcds.2013.33.2495 doi: 10.3934/dcds.2013.33.2495
    [7] M. Liu, P. Mandal, Dynamical behavior of a one-prey two-predator model with random perturbations, Commun. Nonlinear Sci. Numer. Simul., 28 (2015), 123–137. https://doi.org/10.1016/j.cnsns.2015.04.010 doi: 10.1016/j.cnsns.2015.04.010
    [8] W. R. Li, Q. M. Zhang, M. Anke, M. B. Ye, Y. Li, Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps, Math. Biosci. Eng., 17 (2020), 2650–2675. https://doi.org/10.3934/mbe.2020145 doi: 10.3934/mbe.2020145
    [9] Y. L. Cai, J. J. Jiao, Z. J. Gui, Y. T. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [10] E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst., 21 (2017), 2073–2089. https://doi.org/10.3934/dcdsb.2016037 doi: 10.3934/dcdsb.2016037
    [11] X. Mao, T. Aubrey, C. Yuan, Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime switching, J. Appl. Math. Stochastic Anal., 2006 (2014), 5–12. https://doi.org/10.1155/JAMSA/2006/80967 doi: 10.1155/JAMSA/2006/80967
    [12] J. H. Bao, Z. T. Hou, An analytic approximation of solutions of stochastic differential delay equations with Markovian switching, Math. Comput. Modell., 50 (2009), 1379–1384. tps://doi.org/10.1016/j.mcm.2009.07.006 doi: 10.1016/j.mcm.2009.07.006
    [13] Q. Luo, X. R. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
    [14] T. Bui, G. Yin, Hybrid competitive Lotka–Volterra ecosystems: Countable switching states and two-time-scale models, Stochastic Anal. Appl., 37 (2019), 219–242. https://doi.org/10.1080/07362994.2018.1551141 doi: 10.1080/07362994.2018.1551141
    [15] S. J. Gao, D. M. Zhong, Y. Zhang, A remark on stochastic stability of a novel hybrid system, Appl. Math. Lett., 83 (2018), 145–150. https://doi.org/10.1016/j.aml.2018.03.028 doi: 10.1016/j.aml.2018.03.028
    [16] X. W. Yu, S. L. Yuan, T. H. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 359–374. https://doi.org/10.1016/j.cnsns.2017.11.028 doi: 10.1016/j.cnsns.2017.11.028
    [17] A. Settati, A. Lahrouz, On stochastic Gilpin–Ayala population model with Markovian switching, Biosystems, 130 (2015), 17–27. https://doi.org/10.1016/j.biosystems.2015.01.004 doi: 10.1016/j.biosystems.2015.01.004
    [18] Y. Jiang, Z. J. Liu, J. Yang, Y. S. Tan, Dynamics of a stochastic Gilpin–Ayala population model with Markovian switching and impulsive perturbations, Adv. Differ. Equations, 2020 (2020). https://doi.org/10.1186/s13662-020-02900-w
    [19] J. H. Bao, C. G. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
    [20] X. H. Zhang, K. Wang, Stability analysis of a stochastic Gilpin-Ayala model driven by Lévy noise, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1391–1399. https://doi.org/10.1016/j.cnsns.2013.09.013 doi: 10.1016/j.cnsns.2013.09.013
    [21] M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
    [22] Y. L. Zhu, K. Wang, Asymptotic properties of a stochastic Gilpin-Ayala model under regime switching, Nonlinear Anal. Hybrid Syst., 32 (2019), 79–90. https://doi.org/10.1016/j.nahs.2018.10.011 doi: 10.1016/j.nahs.2018.10.011
    [23] C. Y. Ji, D. Q. Jiang, N. Z. Zhong, Analysis of a predator–prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482–498. https://doi.org/10.1016/j.jmaa.2009.05.039 doi: 10.1016/j.jmaa.2009.05.039
    [24] Y. Q. Li, H. L. Gao, Existence, uniqueness and global asymptotic stability of positive solutions of a predator-prey system with Holling II functional response with random perturbation, Nonlinear Anal. Theory Methods Appl., 68 (2008), 1694–1705. https://doi.org/10.1016/j.na.2007.01.008 doi: 10.1016/j.na.2007.01.008
    [25] H. Wei, W. Li, Dynamical behaviors of a Lotka-Volterra competition system with the Ornstein-Uhlenbeck process, Math. Biosci. Eng., 20 (2023), 7882–7904. https://doi.org/10.3934/mbe.2023341 doi: 10.3934/mbe.2023341
    [26] T. Ayoubi, H. Bao, Persistence and extinction in stochastic delay Logistic equation by incorporating Ornstein-Uhlenbeck process, Appl. Math. Comput., 386 (2020), 125465. https://doi.org/10.1016/j.amc.2020.125465 doi: 10.1016/j.amc.2020.125465
    [27] B. Q. Zhou, D. Q. Jiang, T. Hayat, Analysis of a stochastic population model with mean-reverting Ornstein-Uhlenbeck process and Allee effects, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106450–106468. https://doi.org/10.1016/j.cnsns.2022.106450 doi: 10.1016/j.cnsns.2022.106450
    [28] Y. Zhou, D. Jiang, Dynamical behavior of a stochastic SIQR epidemic model with Ornstein-Uhlenbeck process and standard incidence rate after dimensionality reduction, Commun. Nonlinear Sci. Numer. Simul., 116 (2022), 106878. https://doi.org/10.1016/j.cnsns.2022.106878 doi: 10.1016/j.cnsns.2022.106878
    [29] X. Zou, K. Wang, Quasi-morphisms and thepoisson bracketnumerical simulations and modeling for stochastic biological systems with jumps, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1557–1568. https://doi.org/10.48550/arXiv.math/0605406 doi: 10.48550/arXiv.math/0605406
    [30] Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
    [31] R. A. Lipster, Stochastic stability of differential equations, Stochastics, 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146
    [32] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Company, Japan, 1981.
    [33] G. D. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.
    [34] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [35] X. F. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833
    [36] Y. L. Cai, J. J. Jiao, Z. J. Gui, Y. T. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [37] Y. Zhao, S. L. Yuan, J. L. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285–1326. http://dx.doi.org/10.1007/s11538-015-0086-4 doi: 10.1007/s11538-015-0086-4
    [38] I. R. Geijzendorffer, W. van der Werf, F. J. J. A. Bianchi, R. P. O. Schulte, Sustained dynamic transience in a Lotka-Volterra competition model system for grassland species, Ecol. Modell., 222 (2011), 2817–2824. https://doi.org/10.1016/j.ecolmodel.2011.05.029 doi: 10.1016/j.ecolmodel.2011.05.029
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(703) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog