Research article Special Issues

On an exponential D. H. Lehmer problem

  • Received: 25 September 2023 Revised: 26 January 2024 Accepted: 29 January 2024 Published: 01 March 2024
  • For an odd prime $ p $ and a positive integer $ \alpha $, let $ g $ be of multiplicative order $ \tau $ modulo $ q $ and $ q = p^{\alpha} $. Denote by $ N(h, g, q) $ the number of $ a $ such that $ h\nmid (a+(g^{a})_{q}) $ for any $ 1\leq a\leq \tau $ and a fixed integer $ h\geq 2 $ with $ (h, q) = 1 $. The main purpose of this paper is to give a sharp asymptotic formula for

    $ N(k, h, g, q) = \mathop{\sum\limits_{\begin{smallmatrix} a = 1\\ h\nmid (a+(g^{a})_{q}) \end{smallmatrix}}^{\tau}}\left|a-(g^{a})_{q}\right| ^{2k} $

    where $ k $ is any nonnegative integer and $ (a)_{q} $ denotes the smallest positive residue of $ a $ modulo $ q $. In addition, we know that $ N(h, g, q) = N(0, h, g, q) $.

    Citation: Zhefeng Xu, Jiankang Wang, Lirong Zhu. On an exponential D. H. Lehmer problem[J]. Electronic Research Archive, 2024, 32(3): 1864-1872. doi: 10.3934/era.2024085

    Related Papers:

  • For an odd prime $ p $ and a positive integer $ \alpha $, let $ g $ be of multiplicative order $ \tau $ modulo $ q $ and $ q = p^{\alpha} $. Denote by $ N(h, g, q) $ the number of $ a $ such that $ h\nmid (a+(g^{a})_{q}) $ for any $ 1\leq a\leq \tau $ and a fixed integer $ h\geq 2 $ with $ (h, q) = 1 $. The main purpose of this paper is to give a sharp asymptotic formula for

    $ N(k, h, g, q) = \mathop{\sum\limits_{\begin{smallmatrix} a = 1\\ h\nmid (a+(g^{a})_{q}) \end{smallmatrix}}^{\tau}}\left|a-(g^{a})_{q}\right| ^{2k} $

    where $ k $ is any nonnegative integer and $ (a)_{q} $ denotes the smallest positive residue of $ a $ modulo $ q $. In addition, we know that $ N(h, g, q) = N(0, h, g, q) $.



    加载中


    [1] R. K. Guy, Unsolved Problem in Number Theory, 3rd.edn, Springer-Verlag, New York, 2004.
    [2] W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compos. Math., 86 (1993), 307–316.
    [3] W. P. Zhang, A problem of D.H.Lehmer and its generalization (Ⅱ), Compos. Math., 91 (1994), 47–56.
    [4] W. P. Zhang, On the difference between a D. H. Lehmer number and its inverse modulo $q$, Acta Arith., 68 (1994), 255–263. https://doi.org/10.4064/aa-68-3-255-263 doi: 10.4064/aa-68-3-255-263
    [5] Y. N. Niu, R. Ma, H. D. Wang, On the difference between a D. H. Lehmer number and its inverse over short interval, arXiv preprint, (2021), arXiv: 2104.00216. https://doi.org/10.48550/arXiv.2104.00216
    [6] Y. M. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3
    [7] D. Han, Z. F. Xu, Y. Yi, T. P. Zhang, A Note on High-dimensional D. H. Lehmer Problem, Taiwanese J. Math., 25 (2021), 1137–1157. https://doi.org/10.11650/tjm/210705 doi: 10.11650/tjm/210705
    [8] Z. F. Xu, T. P. Zhang, High-dimensional D. H. Lehmer problem over short intervals, Acta Math. Sin. (Engl. Ser.), 30 (2014), 213–228. https://doi.org/10.1007/s10114-014-3324-z doi: 10.1007/s10114-014-3324-z
    [9] W. P. Zhang, On the distribution of primitive roots modulo $p$, Publ. Math. Debrecen, 53 (1998), 245–255. https://doi.org/10.5486/pmd.1998.1750 doi: 10.5486/pmd.1998.1750
    [10] C. I. Cobeli, S. M. Gonek, A. Zaharescu, On the distribution of small powers of a primitive root, J. Number Theory, 88 (2001), 49–58. https://doi.org/10.1006/jnth.2000.2604 doi: 10.1006/jnth.2000.2604
    [11] Z. Rudnick, A. Zaharescu. The distribution of spacings between small powers of a primitive root, Israel J. Math., 120 (2000), 271–287. https://doi.org/10.1007/s11856-000-1280-z doi: 10.1007/s11856-000-1280-z
    [12] I. E. Shparlinski, Distribution of exponential functions modulo a prime power, J. Number Theory, 143 (2014), 224–231. https://doi.org/10.1016/j.jnt.2014.04.010 doi: 10.1016/j.jnt.2014.04.010
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(782) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog