For an odd prime p and a positive integer α, let g be of multiplicative order τ modulo q and q=pα. Denote by N(h,g,q) the number of a such that h∤(a+(ga)q) for any 1≤a≤τ and a fixed integer h≥2 with (h,q)=1. The main purpose of this paper is to give a sharp asymptotic formula for
N(k,h,g,q)=τ∑a=1h∤(a+(ga)q)|a−(ga)q|2k
where k is any nonnegative integer and (a)q denotes the smallest positive residue of a modulo q. In addition, we know that N(h,g,q)=N(0,h,g,q).
Citation: Zhefeng Xu, Jiankang Wang, Lirong Zhu. On an exponential D. H. Lehmer problem[J]. Electronic Research Archive, 2024, 32(3): 1864-1872. doi: 10.3934/era.2024085
[1] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[2] | Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282 |
[3] | Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071 |
[4] | Jin Zhang, Xiaoxue Li . The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234 |
[5] | Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220 |
[6] | Dojin Kim, Sangbeom Park, Jongkyum Kwon . Some identities of degenerate higher-order Daehee polynomials based on $ \lambda $-umbral calculus. Electronic Research Archive, 2023, 31(6): 3064-3085. doi: 10.3934/era.2023155 |
[7] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[8] | Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285 |
[9] | Zhi-Ying Sun, Lan Huang, Xin-Guang Yang . Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28(2): 861-878. doi: 10.3934/era.2020045 |
[10] | Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363 |
For an odd prime p and a positive integer α, let g be of multiplicative order τ modulo q and q=pα. Denote by N(h,g,q) the number of a such that h∤(a+(ga)q) for any 1≤a≤τ and a fixed integer h≥2 with (h,q)=1. The main purpose of this paper is to give a sharp asymptotic formula for
N(k,h,g,q)=τ∑a=1h∤(a+(ga)q)|a−(ga)q|2k
where k is any nonnegative integer and (a)q denotes the smallest positive residue of a modulo q. In addition, we know that N(h,g,q)=N(0,h,g,q).
Let p be an odd prime. For each a=1,…,p−1, there is a unique ˉa∈{1,…,p−1} such that aˉa≡1(modp). If a∈{1,…,p−1} and ˉa (the inverse of a modulo p) are of opposite parity, then we call a a Lehmer number. D. H. Lehmer asked for something nontrivial about
L(p)=#{1≤a≤p−1: 2∤a+ˉa} |
(the total number of Lehmer numbers among 1,…,p−1) (see Problem F12 of [1]), this is called the D. H. Lehmer problem. Zhang [2,3] obtained an asymptotic estimate of L(p):
L(p)=p2+O(p12ln2p). |
For an odd integer q, Zhang [4] gave the following result
q∑′a=12|(a+ˉa+1)(a−ˉa)2k=ϕ(q)q2k(2k+1)(2k+2)+O(4kq2k+12d2(q)ln2q), |
where ∑′qa=1 denotes the summation over all a such that (a,q)=1 and 1≤a≤q, d(q) is the divisor function. For any nonnegative integer k and any real numbers x,y with 0<x,y≤1, let
Fq(x,y,k)=xq∑b=1′yq∑c=1′bc≡1 (modq)2∤(b+c)(b−c)2k. |
Zhang also proved
Fq(x,y,0)=12xyϕ(q)+O(q12d2(q)ln2q). |
Recently, Niu, Ma, and Wang [5] gave a sharp asymptotic formula for Fq(1,y,k) by using estimates of Kloosterman sums and properties of trigonometric sums.
Let q≥3 be an integer, and d and n≥2 be fixed integers with (n,q)=(d,q)=1. For 0<λ1,λ2≤1, Lu and Yi [6] obtained
[λ1q]∑b=1′[λ2q]∑c=1′bc≡d (modq)n∤(b+c)1=(1−1n)λ1λ2ϕ(q)+O(q12d6(q)ln2q). |
Han and Xu et al. [7,8] studied the high-dimensional D. H. Lehmer problem over incomplete intervals by using the properties of trigonometric sums and the estimates of n-dimensional Kloosterman sums.
Let A⊂Zp be the set of the primitive roots modulo p. For a fixed integer k≥0 and any real number 0<σ≤1, Zhang [9] considered the distribution of primitive roots by studying
M(p,k,σ)=∑a∈A,|a−ˉa|<σp|a−ˉa|k. |
Cobeli and Zaharescu et al. [10,11] conducted an in-depth discussion on the distribution of the power of primitive roots. Shparlinski [12] studied the distribution of powers un in the residue ring modulo a large power of a fixed prime for a fixed integer u≥2.
Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For a fixed integer h≥2 with (h,q)=1, we define N(h,g,q) as the number of a∈Zτ such that h∤(a+(ga)q), where Zτ={1,…,τ}. If h=2 and g is a primitive root modulo p, then we have
p571113171923293137414347g2322325232635N(2,g,p)22768128141218202418 |
E.g., for p=11 and a primitive root 2 modulo 11, (a,(3a)11)=(1,2), (3,8), (4,5), (5,10), (6,9), (8,3), and (6,1) are of opposite parity. For p=13 and a primitive root 2 modulo 13, (a,(2a)13)=(1,2), (3,8), (4,3), (5,6), (8,9), and (12,1) are of opposite parity.
In combination with the D. H. Lehmer problem, we propose to find N(h,g,q), or at least to say something nontrivial about it, the problem of finding N(h,g,q) being what we call the exponential D. H. Lehmer problem. The main purpose of this paper is to give an asymptotic formula for
N(k,h,g,q)=τ∑a=1τh∤(a+(ga)q)|a−(ga)q|2k, |
where k is any nonnegative integer and (a)q denotes the smallest positive residue of a modulo q. If k=0 then we have N(0,h,g,q)=N(h,g,q). We get the following results:
Theorem 1. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For any nonnegative integer k and a fixed integer h≥2 with (h,q)=1, we obtain the following asymptotic formula:
N(k,h,g,q)=(1−1h)(1+(τq)2k+2−(1−τq)2k+2)q2k+1(2k+2)(2k+1)+O(4kq2k+12d(q)ln2q). |
Taking h=2 in Theorem 1, we see that a and (ga)q are of opposite parity for any a∈Zτ. Then, we have the following result:
Corollary 1. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For any nonnegative integer k, we have
N(k,2,g,q)=q2k+12(2k+2)(2k+1)(1+(τq)2k+2−(1−τq)2k+2)+O(4kq2k+12d(q)ln2q). |
Taking k=0 in Theorem 1, we can get the following asymptotic formula for N(h,g,q):
Corollary 2. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For a fixed integer h≥2 with (h,q)=1, we obtain
N(h,g,q)=(1−1h)τ+O(q12d(q)ln2q). |
If g is of multiplicative order ϕ(pα)2 modulo pα, then we see that the range of the exponential function ga with a∈Zϕ(pα)2 is the set of quadratic residues modulo pα. Theorem 1 gives the distribution behaviour of |a−(ga)pα| with h∤(a+(ga)pα), and helps us to study the distribution of (ga)pα.
If g=g0 is a primitive root modulo pα, then we have that the exponential function ga0 with a∈Zϕ(pα) maps a complete residue system modulo ϕ(pα) to a reduced residue system modulo pα, this exponential function rearranges the reduced residue system modulo pα. It is also interesting to study the distribution of (ga0)pα.
Corollary 3. Let g0 be a primitive root modulo an odd prime p. For any nonnegative integer k, we have
N(k,2,g0,p)=p2k+1(2k+2)(2k+1)+O(4kp2k+12ln2p). |
Theorem 2. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For any nonnegative integer k, we have
τ∑a=1|a−(ga)q|2k=(1+(τq)2k+2−(1−τq)2k+2)q2k+1(2k+2)(2k+1)+O(4kq2k+12d(q)ln2q). |
We see that the asymptotic formulas of Theorems 1 and 2 and corollaries are nontrivial provided that τ≫4kq12d(q)ln2q.
To prove Theorems 1 and 2, we need the following lemmas:
Lemma 1. Let q and l be integers with q>2 and l≥0. Let r and s be integers with 1≤s≤q and 1≤r≤h. For any given integer h≥2, we have
q∑a=1ale(a−rq+shhq)={ql+1l+1+O(ql),if hq∣(−rq+sh),O(ql|sinπ(−rq+sh)hq|),if hq∤(−rq+sh). |
Proof. See [7].
Lemma 2. Let p be an odd prime and a positive integer α, and let g be of multiplicative order τ modulo pα. For any integers a and b, we have the following estimate:
|τ∑x=1e(bxτ+agxpα)|≤(a,pα)12pα2. |
Proof. Letting χk denote the k-th order Dirichlet character modulo pα with k=ϕ(pα)τ, we know that
k−1∑s=0χsk(c)={k, c is a k−th residue modulo pα;0,otherwise. |
We can write g≡gk0(modpα) for a primitive root g0 modulo pα. Thus, we have that K={(gx)pα | x∈Zτ} is the set of k-th residues modulo pα. For a Dirichlet character χ modulo pα, we have
1kk−1∑s=0pα−1∑c=1χχsk(c)e(acpα)=pα−1∑c=1c∈Kχ(c)e(acpα)=τ∑x=1χ(gx)e(agxpα), |
and there exists a Dirichlet character χb modulo pα satisfying
τ∑x=1e(bxτ+agxpα)=τ∑x=1χb(gx)e(agxpα). |
Since |∑pα−1c=1χ(c)e(acpα)|≤(a,pα)12pα2, we have
|τ∑x=1e(bxτ+agxpα)|≤1kk−1∑s=0|pα−1∑c=1χbχsk(c)e(acpα)|≤(a,pα)12pα2. |
This proves Lemma 2.
Lemma 3. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For any nonnegative integers s and j, we have
τ∑a=1q∑b=1b≡ga (modq)asbj=τs+1pj(s+1)(j+1)+O(τspj+12d(q)ln2q). |
Proof. From the orthogonality of trigonometric sums,
q∑r=1e(mrq)={q, q∣m,0, q∤m. |
It is clear that
τ∑a=1q∑b=1b≡ga(modq)asbj=1qττ∑m=1q∑n=1τ∑a=1q∑b=1b≡ga(modq)e(maτ+nbq)τ∑c=1cse(−mcτ)q∑d=1dje(−ndq)=1qτ(τ∑a=11)(τ∑c=1csq∑d=1dj)+1qττ−1∑m=1(τ∑a=1e(maτ))(τ∑c=1cse(−mcτ)q∑d=1dj)+1qτq−1∑n=1(τ∑a=1e(ngaq))(τ∑c=1csq∑d=1dje(−ndq))+1qττ−1∑m=1q−1∑n=1(τ∑a=1e(maτ+ngaq))(τ∑c=1cse(−mcτ)q∑d=1dje(−ndq))=R1+R2+R3+R4. |
Now, we calculate each term in the above formula one by one. According to Lemma 1, we can get
R1=1qτ(τ∑a=11)(τ∑c=1csq∑d=1dj)=1q(τs+1s+1+O(τs))(qj+1j+1+O(qj))=τs+1qj(s+1)(j+1)+O(τsqj), |
and
R2=1qττ−1∑m=1(τ∑a=1e(maτ))(τ∑c=1cse(−mcτ)q∑d=1dj)=0. |
Similarly, from Lemma 1 and Lemma 2 we have
R3=1qτq−1∑n=1(τ∑a=1e(ngaq))(τ∑c=1csq∑d=1dje(−ndq))≪q−12τsqjq−1∑n=1(n,q)12|sinπnq|≪τsqj+12q−1∑n=1(n,q)12n≪τsqj+12∑d∣qd−12q−1d∑t=11t≪τsqj+12d(q)lnq, |
where we used the Jordan inequality
2π≤sinxx,|x|≤π2. |
Next, we estimate R4 according to Lemma 1 and Lemma 2, and we see that
R4=1qττ−1∑m=1q−1∑n=1(τ∑a=1e(maτ+ngaq))(τ∑c=1cse(−mcτ)q∑d=1dje(−ndq))≪τsqjqττ−1∑m=1q−1∑n=1|τ∑a=1e(maτ+ngaq)|1|sinπmτ|1|sinπnq|≪τsqj+12qττ−1∑m=11|sinπmτ|q−1∑n=1(n,q)12|sinπnq|≪τspj+12d(q)ln2q. |
Finally, combining the relevant conclusions of R1, R2, R3, and R4, we immediately get
τ∑a=1q∑b=1b≡ga (modq)asbj=τs+1qj(s+1)(j+1)+O(τsqj+12d(q)ln2q). |
This proves Lemma 3.
Lemma 4. Let q=pα with an odd prime p and a positive integer α, and let g be of multiplicative order τ modulo q. For any nonnegative integers s,j, and a fixed integer h≥2 with (h,q)=1, we have
τ∑a=1q∑b=1b≡ga (modq)h∤(a+b)asbj=(1−1h)τs+1qj(s+1)(j+1)+O(τsqj+12d(q)ln2q). |
Proof. It is clear that
τ∑a=1q∑b=1b≡ga(modq)h∤(a+b)asbj=τ∑a=1q∑b=1b≡ga(modq)asbj−τ∑a=1q∑b=1b≡ga(modq)h∣(a+b)asbj, |
and
τ∑a=1q∑b=1b≡ga(modq)h∣(a+b)asbj=1hh∑l=1τ∑a=1q∑b=1b≡ga(modq)asbje((a+b)lh)=1hqτh∑l=1τ∑m=1q∑n=1τ∑a=1q∑b=1b≡ga(modq)e(maτ+nbq)τ∑c=1cse(−mcτ+lch)q∑d=1dje(−ndq+ldh)=1hτ∑a=1q∑b=1b≡ga(modq)asbj+1hqτh−1∑l=1τ∑m=1q∑n=1τ∑a=1q∑b=1b≡ga(modq)e(maτ+nbq)τ∑c=1cse(c−mh+lτhτ)q∑d=1dje(d−nh+lqhq)=Σ1+Σ2. |
For 1≤l≤h−1 and 1≤m≤τ, we know that there are (h,τ)−1 pairs of m,l such that hτ∣(−mh+lτ). By the properties of complete residue systems, Lemma 1, and the proof method of Lemma 3, we have
Σ2≪τs+1qj+12hqτh−1∑l=1τ∑m=1hτ∣(−mh+lτ)q−1∑n=1(n,q)12|sinπ(−nh+lq)hq|+τsqj+12hqτh−1∑l=1τ∑m=1hτ∤(−mh+lτ)q−1∑n=11|sinπ(−mh+lτ)hτ|(n,q)12|sinπ(−nh+lq)hq|+τsqjhqττh−1∑l=11|sinπlh|1|sinπlh|≪(h,τ)τsqj+12d(q)ln2q≪τsqj+12d(q)ln2q. |
From Lemma 3, we also have the upper bound estimate of Σ1. Thus, we can get Lemma 4.
In this section, we will complete the proofs of Theorems 1 and 2. First, we can write
N(k,h,g,q)=τ∑a=1h∤(a+(ga)q)|a−(ga)q|2k=τ∑a=1q∑b=1b≡ga(modq)h∤(a+b)|a−b|2k=2k∑s=0(2ks)(−1)2k−sτ∑a=1q∑b=1b≡ga(modq)h∤(a+b)asb2k−s=(1−1h)2k∑s=0(2ks)(−1)2k−s{τs+1q2k−s(s+1)(2k−s+1)+O(τsp2k−s+12d(q)ln2q)}, |
we also have
2k∑s=0(2ks)(−1)2k−sτsq−s(2k−s+1)(s+1)=2k∑s=0(2ks)(−τq)s1(2k−s+1)(s+1)=1(2k+2)(2k+1)2k∑s=0(2k+2s+1)(−τq)s=−q(2k+2)(2k+1)τ(2k+2∑s=0(2k+2s)(−τq)s−1−(τq)2k+2)=q(2k+2)(2k+1)τ(1+(τq)2k+2−(1−τq)2k+2). |
It follows that
N(k,h,g,q)=(1−1h)(1+(τq)2k+2−(1−τq)2k+2)q2k+1(2k+2)(2k+1)+O(4kq2k+12d(q)ln2q). |
This completes the proof of Theorem 1.
Combining Lemma 3 and the proof of Theorem 1, we immediately get Theorem 2.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by National Natural Science Foundation of China (11971381, 12371007) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY007).
The authors declare there is no conflicts of interest.
[1] | R. K. Guy, Unsolved Problem in Number Theory, 3rd.edn, Springer-Verlag, New York, 2004. |
[2] | W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compos. Math., 86 (1993), 307–316. |
[3] | W. P. Zhang, A problem of D.H.Lehmer and its generalization (Ⅱ), Compos. Math., 91 (1994), 47–56. |
[4] |
W. P. Zhang, On the difference between a D. H. Lehmer number and its inverse modulo q, Acta Arith., 68 (1994), 255–263. https://doi.org/10.4064/aa-68-3-255-263 doi: 10.4064/aa-68-3-255-263
![]() |
[5] | Y. N. Niu, R. Ma, H. D. Wang, On the difference between a D. H. Lehmer number and its inverse over short interval, arXiv preprint, (2021), arXiv: 2104.00216. https://doi.org/10.48550/arXiv.2104.00216 |
[6] |
Y. M. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3
![]() |
[7] |
D. Han, Z. F. Xu, Y. Yi, T. P. Zhang, A Note on High-dimensional D. H. Lehmer Problem, Taiwanese J. Math., 25 (2021), 1137–1157. https://doi.org/10.11650/tjm/210705 doi: 10.11650/tjm/210705
![]() |
[8] |
Z. F. Xu, T. P. Zhang, High-dimensional D. H. Lehmer problem over short intervals, Acta Math. Sin. (Engl. Ser.), 30 (2014), 213–228. https://doi.org/10.1007/s10114-014-3324-z doi: 10.1007/s10114-014-3324-z
![]() |
[9] |
W. P. Zhang, On the distribution of primitive roots modulo p, Publ. Math. Debrecen, 53 (1998), 245–255. https://doi.org/10.5486/pmd.1998.1750 doi: 10.5486/pmd.1998.1750
![]() |
[10] |
C. I. Cobeli, S. M. Gonek, A. Zaharescu, On the distribution of small powers of a primitive root, J. Number Theory, 88 (2001), 49–58. https://doi.org/10.1006/jnth.2000.2604 doi: 10.1006/jnth.2000.2604
![]() |
[11] |
Z. Rudnick, A. Zaharescu. The distribution of spacings between small powers of a primitive root, Israel J. Math., 120 (2000), 271–287. https://doi.org/10.1007/s11856-000-1280-z doi: 10.1007/s11856-000-1280-z
![]() |
[12] |
I. E. Shparlinski, Distribution of exponential functions modulo a prime power, J. Number Theory, 143 (2014), 224–231. https://doi.org/10.1016/j.jnt.2014.04.010 doi: 10.1016/j.jnt.2014.04.010
![]() |