This paper is concerned with three-dimensional compressible viscous and heat-conducting micropolar fluid in the domain to the subset of R3 bounded with two coaxial cylinders that present the solid thermoinsulated walls, being in a thermodynamical sense perfect and polytropic. We prove that the regularity and the exponential stability in H2.
Citation: Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry[J]. Electronic Research Archive, 2020, 28(2): 861-878. doi: 10.3934/era.2020045
[1] | Zhi-Ying Sun, Lan Huang, Xin-Guang Yang . Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28(2): 861-878. doi: 10.3934/era.2020045 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
[4] | Haibo Cui, Junpei Gao, Lei Yao . Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29(2): 2063-2075. doi: 10.3934/era.2020105 |
[5] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[6] | Fei Jiang . Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29(6): 4051-4074. doi: 10.3934/era.2021071 |
[7] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[8] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[9] | Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384 |
[10] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
This paper is concerned with three-dimensional compressible viscous and heat-conducting micropolar fluid in the domain to the subset of R3 bounded with two coaxial cylinders that present the solid thermoinsulated walls, being in a thermodynamical sense perfect and polytropic. We prove that the regularity and the exponential stability in H2.
The model of micropolar fluids which respond to micro-rotational motions and spin inertia was first introduced by Eringen [16] in 1966. The mathematical theory of micropolar fluids has been developing in two directions. One explores incompressible and the other compressible flows. For more physical background, we can refer to [2], [3], [39]. In this paper we consider the compressible cylinder symmetric flow of the isotropic, viscous and heat-conducting micropolar fluid which is in the thermodynamical sense perfect and polytropic. The mathematical model of the described fluid is stated for example in the book of G. Lukaszewicz [32] and reads
˙ρ=−ρ∇⋅v, | (1) |
ρ˙v=∇⋅T+ρf, | (2) |
ρjI˙w=∇⋅C+Tx+ρg, | (3) |
ρ˙E=−∇˙q+T:∇v+C:∇ω−Tx⋅w, | (4) |
Tij=(−p+λvk,k)δi,j+μ(vj,i−vi,j)−2μrεmijwm, | (5) |
C=c0wk,kδi,j+cd(wi,j+wj,i)+ca(wj,i−wi,j), | (6) |
q=−kθ∇θ, | (7) |
p=Rρθ, | (8) |
E=cvθ. | (9) |
with notation:
ρ−massdensityv−velocityw−microrotationvelocityE−internalenergydensityθ−absolutetemperatureT−stresstensorC −couplestresstensorq−heatfluxdensityvectorf−bodyforcedensityg−bodycoupledensityp−pressurejI−microinertiadensity(apositiveconstant)kθ−heatconductioncoefficienμr,c0,caandcd−coefficientsofmicroviscosityR−specificgasconstantcv−specificheat(positiveconstant)Tx−axialvector((Tx)i=εijk⋅Tjk)εijk−LeviCivitasymbolδij−Kroneckerdelta. |
Equations (1)-(4) are, respectively, local forms of the conservation laws for the mass, momentum, momentum moment and energy. Equations (5)-(6) are constitutive equations for the micropolar continuum. Equation (7) is the Fourier law and equations (8)-(9) present the assumptions that our fluid is perfect and polytropic. On account of the Clausius-Duhamel inequalities, they must have the following properties:
μ≥0,3λ+2μ≥0,μr>0, | (10) |
cd≥0,3c0+2cd≥0,|cd−ca|≤cd+ca. | (11) |
For simplicity reasons, we assume that
f=g=0. |
In this paper, we consider the three dimensional case of (1)-(9) with the assumption of cylindrical symmetry, and we study the problem with homogeneous boundary conditions as in [13]:
t=0:(ρ,v,w,θ)(r,0)=(ρ0(r),v0(r),w0(r),θ0(r)),r∈G, | (12) |
v|∂G=0,w|∂G=0,∂θ∂r|∂G=0,t>0, | (13) |
where
∂ρ∂t+v1∂ρ∂r+ρ(v1r+∂v1∂r)=0, | (14) |
ρ(∂v1∂t+v1∂v1∂r)=−R∂∂r(ρθ)+(λ+2μ)∂∂r(∂v1∂r+v1r)+ρv22r, | (15) |
ρ(∂v2∂t+v1∂v2∂r)=(μ+μr)∂∂r(∂v2∂r+v2r)−ρv1v2r−2μr∂w3∂r, | (16) |
ρ(∂v3∂t+v1∂v3∂r)=(μ+μr)(∂2v3∂r2+1r∂v3∂r)+2μr(∂w2∂r+w2r), | (17) |
ρjI(∂w1∂t+v1∂w1∂r)=(c0+2cd)∂∂r(∂w1∂r+w1r)+ρjIw2v2r−4μrw1, | (18) |
ρjI(∂w2∂t+v1∂w2∂r)=(ca+cd)∂∂r(∂w2∂r+w2r)−ρjIw1v2r−2μr∂v3∂r−4μrw2, | (19) |
ρjI(∂w3∂t+v1∂w3∂r)=(ca+cd)(∂2w3∂r2+1r∂w3∂r)+2μr(∂v2∂r+v2r)−4μrw3, | (20) |
cVρ(∂θ∂t+v1∂θ∂r)=κ(∂2θ∂r2+1r∂θ∂r)−Rρθ(∂v1∂r+v1r)+(λ+2μ)(∂v1∂r+v1r)2−4μv1r∂v1∂r+(μ+μr)(∂v2∂r+v2r)2−4μv2r∂v2∂r+(μ+μr)(∂v3∂r)2+(c0+2cd)(∂w1∂r+w1r)2−4cdw1r∂w1∂r+(cd+ca)(∂w2∂r+w2r)2−4cdw2r∂w2∂r+(cd+ca)(∂w3∂r)2+4μrw21+4μrw22+4μrw23+4μrw2∂v3∂r−4μr(∂v2∂r+v2r)w3. | (21) |
To analyze the system and draw the desired results, it is convenient to transform the system (14)-(21) to Lagrangian coordinates. The Eulerian coordinates
r(ξ,t)=r0(ξ)+∫t0˜v1(ξ,τ)dτ, | (22) |
where
r0(ξ)=η−1(ξ),η(r)=∫rasρ0(s)ds,r∈G. | (23) |
From
∂∂t(∫rasρ(s,t)ds)=0, |
which implies
∫rasρ(s,t)ds=∫r0asρ0(s)ds=ξ. | (24) |
Now, we have
L=∫basρ(s,t)ds=∫basρ0(s)ds,∀t≥0. | (25) |
Moreover, differentiating (24) with respect to
∂r∂ξ=1r(ξ,t)ρ(r(ξ,t),t). | (26) |
Let us introduce the temporary notation
∂˜ϕ(ξ,t)∂t=∂ϕ(r,t)∂t+v1∂ϕ(r,t)∂r, | (27) |
∂˜ϕ(ξ,t)∂ξ=∂ϕ(r,t)∂r∂r(ξ,t)∂ξ=1rρ(r,t)∂ϕ(r,t)∂r, | (28) |
ρ∂∂ξ(r˜ϕ(ξ,t))=∂ϕ∂r+ϕr. | (29) |
Hereafter, without danger of confusion, we will write
ut=(rv1)x, | (30) |
v1t=r[(λ+2μ)(rv1)xu−Rθu]x+v22r, | (31) |
v2t=(μ+μr)r((rv2)xu)x−v1v2r−2μrrw3x, | (32) |
v3t=(μ+μr)r((rv3)xu)x+(μ+μr)uv3r2+2μr(rw2)x, | (33) |
jIw1t=(c0+2cd)r((rw1)xu)x+jIw2v2r−4μruw1, | (34) |
jIw2t=(cd+ca)r((rw2)xu)x−jIw1v2r−2μrrv3x−4μruw2, | (35) |
jIw3t=(cd+ca)r((rw3)xu)x+(cd+ca)uw3r2+2μr(rv2)x−4μruw3, | (36) |
cVθt=κ(r2θxu)x+1u[(λ+2μ)(rv1)x−Rθ](rv1)x+(μ+μr)(rv2)2xu+(c0+2cd)(rw1)2xu+(cd+ca)(rw2)2xu+(μ+μr)r2v23xu+(cd+ca)r2w23xu−2μ(v21+v22)x−2cd(w21+w22)x+4μr(uw21+uw22+uw23)+4μrrw2v3x−4μrw3(rv2)x, | (37) |
together with the initial and boundary conditions
u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),θ(x,0)=θ0(x),x∈Ω, | (38) |
v(0,t)=v(L,t)=w(0,t)=w(L,t)=0,θx(0,t)=θx(L,t)=0,t>0. | (39) |
A a result of (22) and (26), we can conclude that
rt(x,t)=v1(x,t),r(x,t)rx(x,t)=u(x,t), | (40) |
r0(x)=(a2+2∫x0u0(y)dy)12. | (41) |
It is easy to see from (40) and (41) that the following is satisfied:
rt(x,t)=υ1(x,t),r(x,t)rx(x,t)=u(x,t). | (42) |
Let us mention some related results in this direction. When
For the micropolar fluids case (i.e.,
In the three dimensional case, for the spherical symmetric model of described micropolar fluid in a bounded annular domain, the local existence, uniqueness, global existence and the large time behavior and regularity of the solution has been proved in [6,7,8,9,10], and the exponential stability and regularity of the spherically symmetric solutions with large initial data has been established in [24,23]. Recently, for the spherical symmetric model of described micropolar fluid in an exterior unbounded domain, we proved the large time behavior for spherically symmetric flow of viscous polytropic gas with large initial data in [26]. In the case of cylinder symmetry, which model described micropolar fluid in a bounded domain with two coxial cylinders that present the solid thermoinsulated walls, Dražić and Mujaković [11] established the local existence of generalized solutions, then they proved global existence [12] and the uniqueness [13], Huang and Dražić [21,22] studied the large time behavior of the cylindrically symmetric with small initial data, but the regularity is open. Besides, we would like to mention the work on the global wellposedness of the three-dimensional magnetohydrodynamic equations, Wang and Wang [41] obtained the global existence results for classical 3-D MHD
As mentioned above, the regularity and exponential stability of generalized (global) solutions in
Here we study the problem (30)-(37) on the spatial domain
H1+={(u,v,w,θ)∈H1(0,L)×H1(0,L)×H1(0,L)×H1(0,L):v(0,t)=v(L,T)=0,w(0,t)=w(L,t)=0}, | (43) |
H2+={(u,v,w,θ)∈H2(0,L)×H2(0,L)×H2(0,L)×H2(0,L):v(0,t)=v(L,T)=0,w(0,t)=w(L,t)=0,θx(0,t)=θx(L,t)=0}, | (44) |
which becomes the metric space equipped with the metrics induced from the usual norms. In this paper we will denote by
We assume that the initial data have the following properties
E0=∫L0(12|v0|2+jI2|w0|2+cVθ0)dx,u0,θ0≥m, | (45) |
where
Now, we are in a position to state our main result.
Theorem 1.1. Suppose that initial
u−u∗∈L∞([0,+∞),H2(Ω))∩L2([0,+∞),H2(Ω)),v∈L∞([0,+∞),H2(Ω))∩L2([0,+∞),H3(Ω)),w∈L∞([0,+∞),H2(Ω))∩L2([0,+∞),H3(Ω)),θ−θ∗∈L∞([0,+∞),H2(Ω))∩L2([0,+∞),H3(Ω)). | (46) |
Moreover, there exists a positive constant
‖u−u∗,v,w,θ−θ∗‖≤C2e−γt | (47) |
where
In this section, we shall complete the proof of Theorem 1.1. The global existence of cylindrically symmetric solutions for system (30)- (39) was proved in [22], we shall continue the work and prove the regularity and exponential of the solution. We begin with the following Lemma.
Lemma 2.1. (See [24] and [22]) If
0<a≤r(x,t)≤b,(x,t)∈Ω×[0,+∞),0<C−11≤u(x,t),θ(x,t)≤C1(x,t)∈Ω×[0,∞),‖u−u∗‖2H1+‖v1‖2H1+‖v2‖2H1+‖v3‖2H1+‖w1‖2H1+‖w2‖2H1 |
+‖w3‖2H1+‖θ−θ∗‖2H1+∫t0(‖u−u∗‖2H1+‖v1‖2H2+‖v2‖2H2+‖v3‖2H2+‖w1‖2H2+‖w2‖2H2+‖w3‖2H2+‖θ−θ∗‖2H2+‖v1t‖2+‖v2t‖2+‖v3t‖2+‖w1t‖2+‖w2t‖2+‖w3t‖2+‖θt‖2)ds≤C1. | (48) |
Moreover, there exists constant
eγt(‖u−u∗‖2H1+‖v1‖2H1+‖v2‖2H1+‖v3‖2H1+‖w1‖2H1+‖w2‖2H1+‖w3‖2H1+‖θ−θ∗‖2H1)+∫t0eγs(‖ux‖2+‖v1x‖2H1+‖v2x‖2H1+‖v3x‖2H1+‖w1x‖2H1+‖w2x‖2H1+‖w3x‖2H1+‖θx‖2H1+‖v1t‖2+‖v2t‖2+‖v3t‖2+‖w1t‖2+‖w2t‖2+‖w3t‖2+‖θt‖2)ds≤C1, | (49) |
where
Lemma 2.2. Under the assumptions of Theorem 1.1, the following estimates hold for any
‖v1t(t)‖2+‖v1xx(t)‖2+‖v1x(t)‖2L∞+∫t0‖v1tx(s)‖2ds≤C2, | (50) |
‖v2t‖2+‖v2xx‖2+‖v2x‖2L∞+∫t0‖v2tx‖2ds≤C2, | (51) |
‖v3t‖2+‖v3xx‖2+‖v3x(t)‖2L∞+∫t0‖v3tx‖2ds≤C2. | (52) |
Proof. Differentiating (31) with respect to
12ddt‖v1t‖2=∫L0[r((λ+2μ)(rv1)xu−Rθu)x]tv1tdx+∫L0(v22r)tv1tdx≤−(λ+2μ)∫L0r2v1tx2udx+C1‖v1t‖(‖v1x‖+‖ux‖+‖v1xux‖+‖θx‖+‖v1xx‖+‖v2t‖+‖v22‖)+C1‖v1tx‖(‖v1t‖+‖v21x‖+‖θ1t‖+‖v1x‖+‖v1xv1‖)≤−C−11‖v1tx‖2+C1(‖v1x‖2H1+‖v1t‖2+‖v2t‖2+‖θt‖2+‖ux‖2+‖θx‖2). | (53) |
Integrating (53) with respect to
‖v1t‖2+∫t0‖v1tx‖2ds≤C2. | (54) |
Moreover, integrating (31) with respect to
‖v1xx‖≤C1(‖ux‖+‖θx‖+‖v1t‖+‖ux‖‖v1x‖L∞+‖v2‖2)≤12‖v1xx‖+C1(‖ux‖+‖θx‖+‖vt‖+‖vx‖). | (55) |
Now the above facts along with the Gagliardo-Nirenberg interpolation inequality yields
‖v1x‖L∞≤C1‖v1x‖12‖v1xx‖12+C1‖v1x‖. |
Combined (54) and (55) to arrive at
‖v1t‖2+‖v1xx‖2+‖v1x‖2L∞+∫t0‖v1tx‖2ds≤C2. |
Similarly, differentiating (32) with respect to
12ddt‖v2t‖2=(μ+μr)∫L0[r((rv2)xu)x]tv2tdx−∫L0(v1v2r)tv2tdx−2μ∫L0(rw3x)tv2t≤−(μ+μr)∫L0r2v22xtudx+C1‖v2t‖(‖v2xx‖+‖v2x‖+‖ux‖+‖v2xv1x‖+‖v2t‖+‖w3t‖)+C1‖v2xt‖(‖v2t‖+‖v2xv1x‖+‖v2xv1‖+‖v1xv2‖+‖w3t‖)≤−C−11‖v2tx‖2+C1(‖v2x‖2H1+‖v2t‖2+‖ux‖2+‖w3t‖2). | (56) |
We integrate (56) with respect to
‖v2t‖2+∫t0‖v2tx‖2ds≤C2. | (57) |
Furthermore, integrating (32) with respect to
‖v2xx‖≤C1(‖ux‖+‖v2t‖+‖w3x‖+‖ux‖‖v2x‖L∞)≤12‖v2xx‖+C1(‖ux‖+‖v2t‖+‖v2x‖+‖w3x‖). | (58) |
We use the Gagliardo-Nirenberg interpolation inequality to give
‖v2x‖L∞≤C1‖v2x‖12‖v2xx‖12+C1‖v2x‖. |
Combining with (57)-(58), we arrive at
‖v2t‖2+‖v2xx‖2+‖v2x‖2L∞+∫t0‖v2tx‖2ds≤C2. |
Likewise, differentiating (33) with respect to
12ddt‖v3t‖2=(μ+μr)∫L0[r((rv3)xu)x]tv3tdx+(μ+μr)∫L0uv3r2v3tdx≤−(μ+μr)∫L0r2v23xtudx+C1‖v3t‖(‖v3x‖+‖ux‖+‖v3xux‖+‖v3xx‖)+C1‖v3tx‖(‖v3t‖+‖v3x‖+‖w2‖+‖w2t‖)≤−C1‖v3tx‖2+C1(‖v3t‖2H1+‖v3t‖2+‖ux‖2+‖w2t‖2). | (59) |
Integrating (59) with respect to
‖v3t‖2+∫t0‖v3tx‖2ds≤C2. | (60) |
Similarly argument, we integrate (33) with respect to
‖v3xx‖≤C1(‖v3t‖+‖ux‖+‖ux‖‖v3x‖L∞)≤12‖v3xx‖+C1(‖ux‖+‖v3t‖+‖v3x‖). | (61) |
Here, we have from the Gagliardo-Nirenberg interpolation inequality that
‖v3x‖L∞≤C1‖v3x‖12‖v3xx‖12+C1‖v3x‖, |
which, combined with (60)-(61), gives
‖v3t‖2+‖v3xx‖2+‖v3x‖2L∞+∫t0‖v3tx‖2ds≤C2. |
Thus, we complete the proof.
Lemma 2.3. The following estimates hold true for any
‖w1t‖2+‖w1xx‖2+‖w1x‖2L∞+∫t0‖w1tx‖2ds≤C2, | (62) |
‖w2t‖2+‖w2xx‖2+‖w2x‖2L∞+∫t0‖w2tx‖2ds≤C2, | (63) |
‖w3t‖2+‖w3xx‖2+‖w3x‖2L∞+∫t0‖w3tx‖2ds≤C2. | (64) |
Proof. Differentiating (34) with respect to
12jIddt‖w1t‖2=(c0+2cd)∫L0[r((rw1)xu)x]tw1tdx+jI∫L0(w2v2r)tw1tdx−4μr∫L0(uw1)tw1tdx≤−(c0+2cd)∫L0r2w21txudx+C1‖w1t‖(‖w1x‖+‖w1xx‖+‖w1xux‖+‖ux‖+‖w1xv1x‖+‖w2t‖+‖v2t‖)+c1‖w1tx‖(‖w1t‖+‖w1xv1x‖+‖w1x‖+‖w1v1x‖)≤−C−11‖w1tx‖2+C1(‖w1x‖2H1+‖w1t‖2+‖ux‖2+‖w2t‖2+‖v2t‖2+‖v1x‖2). | (65) |
Integrating (65) with respect to
‖w1t‖2+∫t0‖w1tx‖2ds≤C2, | (66) |
‖w1xx‖≤C1(‖w1t‖+‖u‖+‖w1x‖L∞‖ux‖+‖w2v2‖+‖w1u‖)≤12‖w1xx‖+C1(‖w1t‖+‖w1x‖+‖ux‖). | (67) |
We can use the Gagliardo-Nirenberg interpolation inequality to yield
‖w1x‖L∞≤C1‖w1x‖12‖w1xx‖12+C1‖w1x‖, |
which together with (66)-(67) further implies that
‖w1t‖2+‖w1xx‖2+‖w1x‖2L∞+∫t0‖w1tx‖2ds≤C2. |
Similarly, differentiating (35) with respect to
12jIddt‖w2t‖2=(ca+cd)∫L0[r((rw2)xu)x]tw2tdx−jI∫L0(w1v2r)tw2tdx−2μr∫L0(rv3x)tw2tdx−4μr∫L0(uw2)tw2tdx≤−(ca+cd)∫L0r2w2xtudx+C1‖w2t‖(‖w2x‖+‖w2xx‖+‖w2ux‖+‖w2xux‖+‖w2v1x‖+‖w2xv1x‖+‖w2v1x‖+‖v3x‖+‖v3xt‖)+C1‖w2tx‖(‖w2t‖+‖w2v1x‖+‖w2xv1‖+‖w1tv2‖+‖w1v2t‖)≤−C−11‖w2tx‖2+C1(‖w2x‖2H1+‖ux‖2+‖v1x‖2+‖w2x‖2+‖v3x‖2+‖v3tx‖2+‖w2t‖2+‖w1t‖2+‖v2t‖2). | (68) |
Integrating (68) with respect to
‖w2t‖2+∫t0‖w2tx‖2ds≤C2. | (69) |
We integrate (35) with respect to
‖w2xx‖≤C1(‖w2t‖+‖w2‖+‖w2ux‖+‖w2xux‖+‖w1v2‖+‖v3x‖+‖w2u‖)≤C1(‖w2t‖+‖ux‖+‖w2x‖L∞‖ux‖+‖v3x‖+‖w1‖+‖v2‖+‖u‖+‖w2‖)≤12‖w2xx‖+C1(‖ux‖+‖w2t‖+‖w2x‖+‖v3x‖). | (70) |
Similar argument, we deduce from the Gagliardo-Nirenberg interpolation inequality that
‖w2x‖L∞≤C1‖w2x‖12‖w2xx‖12+C1‖w2x‖. |
Combining with (69)-(70), we have
‖w2t‖2+‖w2xx‖2+‖w2x‖2L∞+∫t0‖w2tx‖2ds≤C2. |
Differentiating (36) with respect to
12jIddt‖w3t‖2=(ca+cd)∫L0[r((rw3)xu)x]tw3tdx+(ca+cd)∫L0(uw3r2)tw3tdx+2μr∫L0[(rv2)x]tw3tdx−4μr∫L0(uw3)tw3tdx |
≤−(ca+cd)∫L0r2w23txudx+C1‖w3t‖(‖w3xx‖+‖w3xux‖+‖ux‖+‖v1x‖+‖w3t‖+‖w3xv1x‖+‖v2t‖+‖v2x‖+‖v2xt‖)+C1‖w3tx‖(‖w3v1x‖+‖w3t‖+‖w3x‖+‖w3v1x‖)≤−C−11‖w3tx‖2+C1(‖w3x‖2H1+‖ux‖2+‖w3t‖2+‖v1x‖2+‖v2t‖2+‖v2x‖2+‖v2tx‖2). | (71) |
Integrating (71) with respect to
‖w3t‖2+∫t0‖w3tx‖2ds≤C2. | (72) |
Next, integrating (36) with respect to
‖w3xx‖≤C1(‖w3t‖+‖ux‖+‖w3x‖L∞‖ux(t)‖)≤12‖w3xx‖+C1(‖w3t‖+‖ux‖+‖w3x‖), | (73) |
where we have used the following simple Gagliardo-Nirenberg interpolation inequality
‖w3x‖L∞≤C1‖w3x‖12‖w2xx‖12+C1‖w3x‖. |
By (72) and (73), we can get
‖w3t‖2+‖w3xx‖2+‖w3x‖2L∞+∫t0‖w3tx‖2ds≤C2. |
The proof is complete.
Lemma 2.4. Under the assumptions of Theorem 1.1, the following estimate holds for any
‖θt‖2+‖θxx‖2+‖θx‖2L∞+∫t0‖θtx‖2ds≤C2, | (74) |
Proof. Differentiating (37) with respect to
12cvddt‖θt‖2=κ∫L0(r2θxu)xtθtdx+∫L0[1u[(λ+2μ)(rv1)x−Rθ](rv1)x]tθtdx+(μ+μr)∫L0((rv2)2xu)tθtdx+(c0+2cd)∫L0((rw1)2xu)tθtdx+(ca+cd)∫L0((rw2)2xu)tθtdx+(μ+μr)∫L0(r2v23xu)tθtdx+(ca+cd)∫L0(r2w23xu)tθtdx−2μr∫L0(v21+v22)xtθtdx−2cd∫L0(w21+w22)xtθtdx+4μr∫L0(uw21+uw22+uw23)tθtdx+4μr∫L0(rw2v3x)tθtdx−4μr∫L0(w3(rv2)x)tθtdx |
≤−C−11‖θxt‖2+C1(‖θx‖2+‖v1x‖2H1+‖v1xt‖2+‖v2x‖2H1+‖v2xt‖2+‖v3x‖2H1+‖v3xt‖2+‖w1x‖2H1+‖w1xt‖2+‖w2x‖2H1+‖w2xt‖2+‖w3x‖2H1+‖w3xt‖2+‖ux‖+‖v1t‖2+‖v2t‖2+‖v3t‖2+‖w1t‖2+‖w2t‖2+‖w3t‖2+‖θt‖2), |
which, together with (50)-(52), (62)-(64) and Lemma 2.1, gives
‖θt‖2+‖θxx‖2+∫t0‖θtx‖2ds≤C2. | (75) |
By virtue of the Gagliardo-Nirenberg interpolation inequality and (75), we can obtain (74). The proof is complete.
Lemma 2.5. Under the assumptions of Theorem 1.1, the following estimates hold for any
‖uxx‖2+∫t0‖uxx‖2ds≤C2, | (76) |
∫t0(‖v1xxx‖2+‖v2xxx‖2+‖v3xxx‖2+‖w1xxx‖2+‖w2xxx‖2+‖w3xxx‖2+‖θxxx‖2)ds≤C2. | (77) |
Proof. Differentiating (31) with respect to
v1tx=[r((λ+2μ)(rv1)xu−Rθu)x]x+(v22r)x=uv1tr2−uv22r2+(λ+2μ)r(rv1)xxxu−(λ+2μ)r(rv1)xxuxu2−(λ+2μ)r(rv1)xxuxu2−(λ+2μ)r(rv1)xuxxu2+2(λ+2μ)r(rv1)xu2xu3−rR(λ+2μ)θxxu+(λ+2μ)rRθxuxu2+(λ+2μ)rRθxuxu2+(λ+2μ)rRθuxxu2−2(λ+2μ)rRθu2xu3+2v2v2xr−v22ur3. |
By virtue of (30)
(λ+2μ)∂∂t(uxxu)+(λ+2μ)Rθuxxu2=r−1v1tx+E(x,t), | (78) |
where
E(x,t)=−r−3uv1t+r−3uv22+2(λ+2μ)(rv1)xxuxu2−2(λ+2μ)(rv1)xu2xu3+R(λ+2μ)θxxu−2(λ+2μ)Rθxuxu2+2(λ+2μ)Rθu2xu3−2r−2v2v2x+r−4v22u. |
Multiplying (78) by
ddt‖uxxu‖2≤−C11‖uxxu‖2+C1‖E(x,t)‖2, | (79) |
where
‖E(x,t)‖2≤12C1‖uxxu‖2+C1(‖v1t‖2+‖v1x‖2H1+‖ux‖2+‖θx‖2H1+‖v2x‖2). | (80) |
Integrating (79) with respect to
‖ux‖2+∫L0‖uxx‖2ds≤C2. |
On the other hand, differentiating (31) with respect to
v1tx=uv1tr2−uv22r2+(λ+2μ)r(rv1)xxxu−2(λ+2μ)r(rv1)xxuxu2−(λ+2μ)r(rv1)xuxxu2+2(λ+2μ)r(rv1)xu2xu3−rR(λ+2)θxxu+2(λ+2μ)rRθxuxu2+(λ+2μ)rRθuxxu2−2(λ+2μ)rRθu2xu3+2v2v2xr−v22ur3, |
which implies
‖v1tx‖≤C1(‖v1x‖H2+‖ux‖H1+‖θx‖H1+‖v2x‖), |
or
‖v1xxx‖≤C1(‖v1x‖H1+‖v1tx‖+‖ux‖H1+‖θx‖H1+‖v2x‖). |
Differentiating (32) with respect to
v2tx=(μ+μr)rx(rv2)xxu−(μ+μr)rx(rv2)xuxu2+(μ+μr)r(rv2)xxxu3−(μ+μr)r(rv2)xxuxu2−(μ+μr)r(rv2)xxuxu2−(μ+μr)r(rv2)xuxxu2+2(μ+μr)r(rv2)xu2xu3−(v2xv1+v2v1x)r−v2v1rxr2−2μr(rxw3x+rw3xx), |
thus
‖v2tx‖≤C1(‖v2x‖H2+‖ux‖H1+‖v1x‖+‖w3x‖H1), |
or
‖v2xxx‖≤C1(‖v2x‖H1+‖v2tx‖+‖ux‖H1+‖w3x‖H1+‖v1x‖). |
Similarly, differentiating (33) with respect to
v3tx=(μ+μr)rx(rv3)xxu−(μ+μr)rx(rv3)xuxu2+(μ+μr)r(rv3)xxxu−(rv3)xxuxu2−(μ+μr)r[(rv3)xxux+(rv3)xuxx]u2−2(rv3)xu2xuu4+(μ+μr)uxv3+uv3xr2−(μ+μr)2uv3rxr3+2μr(rxxw2+rxw2x+rxw2x+rw2xx), |
thus
‖v3tx‖≤C1(‖v3x‖H2+‖ux‖H1+‖w2x‖H1), |
or
‖v3xxx‖≤C1(‖v3x‖H1+‖v3tx‖+‖ux‖H1+‖w2x‖H1). |
We can differentiate (34) with respect to
jIw1tx=(c0+2cd)rx(rw1)xxu−(c0+2cd)rx(rw1)xuxu2+(c0+2cd)r(rw1)xxxu−(rw1)xxux)xxu2−(c0+2cd)r[(rw1)xxux+(rw1)xuxx]u2−2(rw1)xu2xuu4+jIw2xv2+w2v2xr−jIw2v2rxr2−4μr(uxw1+uw1x). |
Then
‖w1tx‖≤C1(‖w1x‖H2+‖ux‖H1+‖v2x‖+‖w2x‖), |
or
‖w1xxx‖≤C1(‖w1x‖H1+‖w1tx‖+‖ux‖H1‖w2x‖+‖v2x‖). |
Differentiating (35) with respect to
jIw2tx=(ca+cd)rx(rw2)xxu−(ca+cd)rx(rw2)xuxu2+(ca+cd)r(rw2)xxxu−(rw2)xxuxu2−jIw1xv2+w1v2xr−(ca+cd)r[(rw2)xxux+(rw2)xuxx]u2−2(rw2)xu2xuu4+jIw1v2rxr2−2μr(rxw3xx+rv3xx)−4μr(uxw2+uw2x), |
thus
‖w2tx‖≤C1(‖w2x‖H2+‖ux‖H1+‖v2x‖+‖w1x‖+‖w3x‖+‖v3x‖H1), |
or
‖w2xxx‖≤C1(‖w2x‖H1+‖w2tx‖+‖ux‖H1+‖w1x‖+‖v2x‖+‖w3x‖+‖v3x‖H1). |
Likewise, we differentiate (36) with respect to
jIw3xt=(ca+cd)rx(rw3)xxu−(ca+cd)rx(rw3)xuxu2+(ca+cd)r(rw3)xxxu−(rw3)xxuxu2−(ca+cd)r(rw3)xxux+(rw3)xuxxu2+(ca+cd)r2(rw3)xu2xu3+(ca+cd)uxw3+uw3xr2−2(ca+cd)u2w3r4+2μr(rxxv2+rxv2x+rxv2x+rv2xx)−4μr(uxw3+uw3x). |
Then we have
‖w3tx‖≤C1(‖w3x‖H2+‖ux‖H1+‖v2x‖H1), |
or
We can differentiate (37) with respect to
or
According to the estimate above, we have
(81) |
(82) |
(83) |
(84) |
(85) |
(86) |
(87) |
or
(88) |
(89) |
(90) |
(91) |
(92) |
(93) |
(94) |
By (50)-(52), (62)-(64), (74), (76), (81)-(87) and Lemma 2.1, we get (77). The proof is complete.
Lemma 2.6. Under assumptions of Theorem 1.1, there exists a positive constant
(95) |
Proof. We multiply (53) by
(96) |
Multiplying (56), (59), (65), (68), (71) and (75) by
(97) |
On the other hand, multiplying (79) by
(98) |
Picking
(99) |
By (31)-(37), (81)-(87), (96)-(97) and (99), we have
which, combined with (96)-(97) and (99), yields (95). The proof is complete.
Proof of Theorem 1.1. According to Lemmas 2.2-2.6, Theorem 1.1 is complete.
The authors are grateful to the referees for their helpful suggestions which improved the presentation of this paper. This research was supported by the NSFC (No. 11871212 and No. 11501199) and Key Research Projects in Colleges of Henan Province (No. 20A110026).
[1] | S. Antontscv, A. Kazhikhov and V. Monakhov, Boundary Problems in Mechanics of Nonhomogeneous Fluids, Amsterdam, New York, 1990. |
[2] |
An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid. Commun. Nonlinear Sci. Numer. Simul. (2015) 20: 121-135. ![]() |
[3] |
Numerical simulation for unsteady compressible micropolar fluid flow. Comput. Fluids (2012) 66: 1-9. ![]() |
[4] | P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. |
[5] |
Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate. J. Math. Anal. Appl. (2017) 449: 464-489. ![]() |
[6] |
I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: A local existence theorem, Bound. Value Probl., 2012 (2012), 25 pp. doi: 10.1186/1687-2770-2012-69
![]() |
[7] |
I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Uniqueness of a generalized solution, Bound. Value Probl., 2014 (2014), 17 pp. doi: 10.1186/s13661-014-0226-z
![]() |
[8] |
I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: A global existence theorem, Bound. Value Probl., 2015 (2015), 21 pp. doi: 10.1186/s13661-015-0357-x
![]() |
[9] |
3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Large time behavior of the solution. J. Math. Anal. Appl. (2015) 431: 545-568. ![]() |
[10] |
3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution. J. Math. Anal. Appl. (2016) 438: 162-183. ![]() |
[11] |
Three-dimensional compressible viscous micropolar fluid with cylindrical symmetry: Derivation of the model and a numerical solution. Math. Comput. Simul. (2017) 140: 107-124. ![]() |
[12] | 3-D flow of a compressible viscous micropolar fluid with cylindrical symmetry: A global existence theorem. Math. Meth. Appl. Sci. (2017) 40: 4785-4801. |
[13] |
Three-dimensional compressible viscous micropolar fluid with cylindrical symmetry: Uniqueness of a generalized solution. Math. Meth. Appl. Sci. (2017) 40: 2686-2701. ![]() |
[14] |
Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity. J. Math. Anal. Appl. (2018) 463: 477-495. ![]() |
[15] |
Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal. RWA (2018) 42: 71-92. ![]() |
[16] |
Theory of micropolar fluids. J. Math. Mech. (1966) 16: 1-18. ![]() |
[17] |
Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete Contin. Dyn. Syst. (2019) 39: 3069-3097. ![]() |
[18] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, 83. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754
![]() |
[19] |
On the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. (1964) 16: 269-315. ![]() |
[20] |
Asymptotic behavior of the solution to the system for a viscous reactive gas. J. Differential Equstions (1999) 155: 177-202. ![]() |
[21] |
Large-time behavior of solutions to the 3-D flow of a compressible viscous micropolar fluid with cylindrical symmetry. Math. Meth. Appl. Sci. (2018) 41: 7888-7905. ![]() |
[22] |
L. Huang and I. Drazic, Exponential stability for the compressible micropolar fluid with cylinder symmetry in , J. Math. Phys., 60 (2019), 021507, 14 pp. doi: 10.1063/1.5017652
![]() |
[23] |
Global behavior for compressible viscous micropolar fluid with spherical symmetry. J. Math. Anal. Appl. (2016) 443: 1158-1178. ![]() |
[24] |
L. Huang and R. X. Lian, Exponential stability of spherically symmetric solutions for compressible viscous micropolar fluid, J. Math. Phys., 56 (2015), 071503, 12 pp. doi: 10.1063/1.4926426
![]() |
[25] |
Exponential stability for a one-dimensional compressible viscous micropolar fluid. Math. Meth. Appl. Sci. (2015) 38: 5197-5206. ![]() |
[26] | L. Huang, Z. Sun and X. Yang, Large time behavior of spherically symmetrical micropolar fluid in unbounded domain, Preprint, (2019). |
[27] |
L. Huang, X.-G. Yang, Y. J. Lu and T. wang, Global attractor for a nonlinear one-dimensional compressible viscous micropolar fluid model, Z. Angew. Math. Phys., 70 (2019), 20 pp. doi: 10.1007/s00033-019-1083-5
![]() |
[28] |
Strong -solutions of the Navier-Stokes equations in with applications to weak solutions. Math. Z. (1984) 187: 471-480. ![]() |
[29] |
Some uniform estimates and large-time behavior for one dimensional compressible Navier-Stokes in unbounded domains with large data. Arch. Ration. Mech. Anal. (2016) 220: 1195-1208. ![]() |
[30] |
Global mild solutions of Navier-Stokes equations. Commun. Pure Appl. Math. (2011) 64: 1297-1304. ![]() |
[31] |
Global spherical symmetric flows for a viscous radiative and reactive gas in an exterior domain. J. Differential Equations (2019) 266: 6459-6506. ![]() |
[32] |
G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5
![]() |
[33] | One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem. Glas. Mat. Ser. III (1998) 33: 71-91. |
[34] | One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem. Glas. Mat. Ser. III (1998) 33: 199-208. |
[35] | One-dimensional flow of a compressible viscous micropolar fluid: Regularity of the solution. Red. Mat. (2001) 10: 181-193. |
[36] |
Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem. Ann. Univ. Ferrara Sez. VII Sci. Mat. (2007) 53: 361-379. ![]() |
[37] |
N. Mujaković, Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), 189748, 15 pp. doi: 10.1155/2008/189748
![]() |
[38] |
Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem. Math. Inequal. Appl. (2009) 12: 651-662. ![]() |
[39] |
Laminar fluid behavior in microchannels using micropolar fluid theory. Sens. and Actuators A: Phys. (1999) 73: 101-108. ![]() |
[40] | Global well-posedness and analyticity results to 3-D generalized. Nonlinear Anal. RWA (2016) 59: 65-70. |
[41] |
Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. RWA (2014) 17: 245-251. ![]() |
[42] |
Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann. Mat. Pura Appl. (2016) 195: 1111-1121. ![]() |
1. | Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville, Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry, 2022, 21, 1534-0392, 1595, 10.3934/cpaa.2022033 | |
2. | Lan Huang, Jiamei Bian, Yingying Chen, Large-time behavior of solutions to the compressible micropolar fluid with shear viscosity, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024056 |