We construct a family of unital non-associative algebras $ \{T_\alpha\vert\; 2<\alpha\in\mathbb R\} $ such that $ \underline{exp}(T_\alpha) = 2 $, whereas $ \alpha\le\overline{exp}(T_\alpha)\le\alpha+1 $. In particular, it follows that ordinary PI-exponent of codimension growth of algebra $ T_\alpha $ does not exist for any $ \alpha> 2 $. This is the first example of a unital algebra whose PI-exponent does not exist.
Citation: Dušan D. Repovš, Mikhail V. Zaicev. On existence of PI-exponents of unital algebras[J]. Electronic Research Archive, 2020, 28(2): 853-859. doi: 10.3934/era.2020044
We construct a family of unital non-associative algebras $ \{T_\alpha\vert\; 2<\alpha\in\mathbb R\} $ such that $ \underline{exp}(T_\alpha) = 2 $, whereas $ \alpha\le\overline{exp}(T_\alpha)\le\alpha+1 $. In particular, it follows that ordinary PI-exponent of codimension growth of algebra $ T_\alpha $ does not exist for any $ \alpha> 2 $. This is the first example of a unital algebra whose PI-exponent does not exist.
[1] | Y. A. Bahturin, Identical Relations in Lie Algebras, VNU Science Press, b.v., Utrecht, 1987. |
[2] | Graded polynomial identities of matrices. Linear Algebra Appl. (2002) 357: 15-34. |
[3] | V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag Singapore, Singapore, 2000. |
[4] | Finite-dimensional non-associative algebras and codimension growth. Adv. in Appl. Math. (2011) 47: 125-139. |
[5] | On codimension growth of finitely generated associative algebras. Adv. Math. (1998) 140: 145-155. |
[6] | Exponential codimension growth of PI algebras: An exact estimate. Adv. Math. (1999) 142: 221-243. |
[7] | A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/surv/122 |
[8] | On codimension growth of finite-dimensional Lie superalgebras. J. Lond. Math. Soc. (2) (2012) 85: 534-548. |
[9] | Growth of varieties of Lie algebras. Russian Math. Surveys (1990) 45: 27-52. |
[10] | Existence of identities in $A \otimes B$. Israel J. Math. (1972) 11: 131-152. |
[11] | Numerical invariants of identities of unital algebras. Comm. Algebra (2015) 43: 3823-3839. |
[12] | M. V. Zaicev, Varieties and identities of affine Kac-Moody algebras, Methods in Ring Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 198 (1998), 303-314. |
[13] | Growth of codimensions of metabelian algebras. Moscow Univ. Math. Bull. (2017) 72: 233-237. |
[14] | On existence of PI-exponents of codimension growth. Electron. Res. Announc. Math. Sci. (2014) 21: 113-119. |
[15] | Integrality of exponents of growth of identities of finite dimensional Lie algebras. Izv. Math. (2002) 66: 463-487. |
[16] | Identities of finite-dimensional unitary algebras. Algebra Logic (2011) 50: 381-404. |
[17] | Exponential codimension growth of identities of unitary algebras. Sb. Math. (2015) 206: 1440-1462. |