Research article Special Issues

Asymptotic behavior of a Balakrishnan-Taylor suspension bridge

  • Received: 11 October 2023 Revised: 08 January 2024 Accepted: 11 January 2024 Published: 19 February 2024
  • In this manuscript, we examine a nonlinear Cauchy problem aimed at describing the deformation of the deck of either a footbridge or a suspension bridge in a rectangular domain $ \Omega = (0, \pi)\times (-d, d) $, with $ d < < \pi $, incorporating hinged boundary conditions along its short edges, as well as free boundary conditions along its remaining free edges. We establish the existence of solutions and the exponential decay of energy.

    Citation: Zayd Hajjej. Asymptotic behavior of a Balakrishnan-Taylor suspension bridge[J]. Electronic Research Archive, 2024, 32(3): 1646-1662. doi: 10.3934/era.2024075

    Related Papers:

  • In this manuscript, we examine a nonlinear Cauchy problem aimed at describing the deformation of the deck of either a footbridge or a suspension bridge in a rectangular domain $ \Omega = (0, \pi)\times (-d, d) $, with $ d < < \pi $, incorporating hinged boundary conditions along its short edges, as well as free boundary conditions along its remaining free edges. We establish the existence of solutions and the exponential decay of energy.



    加载中


    [1] M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal. Theory Methods Appl., 106 (2014), 18–34. https://doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011
    [2] P. J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
    [3] J. Glover, A. C. Lazer, P. J. McKenna, Existence and stability of large scale nonlinear oscillation in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172–200. https://doi.org/10.1007/BF00944997 doi: 10.1007/BF00944997
    [4] I. Bochicchio, C. Giorgi, E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations, J. Math. Anal. Appl., 402 (2013), 319–333. https://doi.org/10.1016/j.jmaa.2013.01.036 doi: 10.1016/j.jmaa.2013.01.036
    [5] Q. Ma, C. Zhong, Existence of strong s olutions and global attractors for the coupled suspension bridge equations, J. Differ. Equations, 246 (2009), 3755–3775. https://doi.org/10.1016/j.jde.2009.02.022 doi: 10.1016/j.jde.2009.02.022
    [6] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.5879 doi: 10.3934/dcds.2015.35.5879
    [7] F. Gazzola, Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, 1$^{nd}$ edition, Springer-Verlag, New York, 2015. https://doi.org/10.1007/978-3-319-15434-3
    [8] E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal. Real World Appl., 28 (2016), 91–125. https://doi.org/10.1016/j.nonrwa.2015.09.005 doi: 10.1016/j.nonrwa.2015.09.005
    [9] Y. Wang, Finite time blow-up and global solutions for fourth-order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713–733. https://doi.org/10.1016/j.jmaa.2014.04.015 doi: 10.1016/j.jmaa.2014.04.015
    [10] W. Liu, H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equations Appl., 24 (2017), 67. https://doi.org/10.1007/s00030-017-0491-5 doi: 10.1007/s00030-017-0491-5
    [11] S. A. Messaoudi, S. E. Mukiawa, A suspension bridge problem: existence and stability, in Mathematics Across Contemporary Sciences, Springer-Cham, (2017), 151–165. https://doi.org/10.1007/978-3-319-46310-0_9
    [12] M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka, Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signals Syst., 30 (2018), 20. https://doi.org/10.1007/s00498-018-0226-0 doi: 10.1007/s00498-018-0226-0
    [13] A. D. D. Cavalcanti, M. Cavalcanti, W. J. Corrêa, Z. Hajjej, M. S. Cortés, R. V. Asem, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, J. Franklin Inst., 357 (2020), 2388–2419. https://doi.org/10.1016/j.jfranklin.2020.01.004 doi: 10.1016/j.jfranklin.2020.01.004
    [14] D. Bonheure, F. Gazzola, I. Lasiecka, J. Webster, Long-time dynamics of a hinged-free plate driven by a nonconservative force, Ann. Inst. Henri Poincare C, 39 (2022), 457–500. https://doi.org/10.4171/aihpc/13 doi: 10.4171/aihpc/13
    [15] G. Crasta, A. Falocchi, F. Gazzola, A new model for suspension bridges involving the convexification of the cables, Z. Angew. Math. Phys., 71 (2020), 93. https://doi.org/10.1007/s00033-020-01316-6 doi: 10.1007/s00033-020-01316-6
    [16] Z. Hajjej, S. A. Messaoudi, Stability of a suspension bridge with structural damping, Ann. Pol. Math., 125 (2020), 59–70. https://doi.org/10.4064/ap191023-4-2 doi: 10.4064/ap191023-4-2
    [17] Z. Hajjej, M. Al-Gharabli, S. Messaoudi, Stability of a suspension bridge with a localized structural damping, Discrete Contin. Dyn. Syst. - Ser. S, 15 (2022), 1165–1181. https://doi.org/10.3934/dcdss.2021089 doi: 10.3934/dcdss.2021089
    [18] Z. Hajjej, General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, Z. Angew. Math. Phys., 72 (2021), 90. https://doi.org/10.1007/s00033-021-01526-6 doi: 10.1007/s00033-021-01526-6
    [19] S. A. Messaoudi, S. E. Mukiawa, Existence and decay of solutions to a viscoelastic plate equations, Electron. J. Differ. Equations, 2016 (2016), 1–14. Available from: https://hdl.handle.net/10877/16894.
    [20] M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 99 (2018), 50–74. https://doi.org/10.1080/00036811.2018.1484910 doi: 10.1080/00036811.2018.1484910
    [21] A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9
    [22] B. K. Kakumani, S. P. Yadav, Decay estimate in a viscoelastic plate equation with past history, nonlinear damping, and logarithmic nonlinearity, Boundary Value Probl., 2022 (2022), 95. https://doi.org/10.1186/s13661-022-01674-2 doi: 10.1186/s13661-022-01674-2
    [23] E. Berchio, A. Falocchi, A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. Mat. Pura Appl., 200 (2021), 1651–1681. https://doi.org/10.1007/s10231-020-01054-6 doi: 10.1007/s10231-020-01054-6
    [24] E. Berchio, A. Falocchi, About symmetry in partially hinged composite plates, Appl. Math. Optim., 84 (2021), 2645–2669. https://doi.org/10.1007/s00245-020-09722-y doi: 10.1007/s00245-020-09722-y
    [25] M. M. Cavalcanti, V. N. D. Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [26] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, 2$^{nd}$ edition, Dunod, Paris, 2002.
    [27] M. S. Abdo, S. A. Idris, W. Albalawi, A. Abdel-Aty, M. Zakarya, E. E. Mahmoud, Qualitative study on solutions of piecewise nonlocal implicit fractional differential equations, J. Funct. Spaces, 2023 (2023), 2127600. https://doi.org/10.1155/2023/2127600 doi: 10.1155/2023/2127600
    [28] H. M. Ahmed, A. M. S Ahmed, M. A. Ragusa, On some non-instantaneous impulsive differential equations with fractional brownian motion and Poisson jumps, TWMS J. Pure Appl. Math., 14 (2023), 125–140.
    [29] M. Houas, M. I. Abbas, F. Martínez, Existence and Mittag-Leffler-Ulam-stability results of sequential fractional hybrid pantograph equations, Filomat, 37 (2023), 6891–6903.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(591) PDF downloads(67) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog