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Abstract: In this manuscript, we examine a nonlinear Cauchy problem aimed at describing the
deformation of the deck of either a footbridge or a suspension bridge in a rectangular domain
Ω = (0, π) × (−d, d), with d << π, incorporating hinged boundary conditions along its short edges,
as well as free boundary conditions along its remaining free edges. We establish the existence of
solutions and the exponential decay of energy.
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1. Introduction

This paper is concerned with well-posedness and exponential stability, in Ω × (0,+∞), for the
following Balakrishnan-Taylor suspension bridge

|zt|
κztt + α∆

2ztt + ∆
2z −

(
−ξ1 + ξ2∥zx∥

2 + σ(zx, zxt)
)

zxx + ∆
2zt + γ(x) f (zt) + h(z) = 0, (1.1)

with the boundary conditions
z(0, y, t) = zxx(0, y, t) = z(π, y, t) = zxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,+∞),
zyy(x,±d, t) + µzxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,∞),
zyyy(x,±d, t) + (2 − µ)zxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,+∞),

(1.2)

and initial conditions

z(x, y, 0) = z0(x, y), zt(x, y, 0) = z1(x, y), in Ω × (0,+∞), (1.3)

where κ and α are positive constants. The constant µ is the Poisson ratio and ranges in value from
0.1 to 0.2 for concrete and for metals it is about 0.3. Accordingly, we will make the assumption that
0 < µ < 1

2 .
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The constant σ > 0 is the Balakrishnan-Taylor damping coefficient, with the understanding that ξ1
is positive for compressed plates and negative for stretched plates ( [1, Section 5]), ξ2 > 0 relies on the
material elasticity of the deck, and the term ξ2∥zx∥

2 measures the geometric nonlinearity of the plate
due to its stretching.

Here, the notation (·, ·) stands for the inner product in L2(Ω) and its corresponding norm will be
denoted by ∥ · ∥.

The function γ ∈ L∞(Ω) satisfies

γ(x) ≥ γ0 > 0, a.e., in ω and γ = 0 in Ω \ ω,

where ω is an open subset of Ω.
In this paper, we take into account the following conditions:
(H1): f : R → R is a nondecreasing C1 function such that there exist positive constants ε, c1, c2

and a strictly increasing function F ∈ C1([0,+∞)), with F(0) = 0, and F is a linear or strictly convex
C2 function on (0, ε], such that

s2 + f 2(s) ≤ F−1(s f (s)) for all |s| ≤ ε,
c1|s| ≤ | f (s)| ≤ c2|s| for all |s| ≥ ε.

(1.4)

(H2): h : R→ R is a Lipschitz function with h(0) = 0.

(H3): H(t) =
∫ t

0
h(s) ds is positive such that

sh(s) − H(s) ≥ 0, ∀ s ∈ R.

Remark 1.1. Hypothesis (H1) implies that s f (s) > 0 for all s , 0.

Model (1.1) describes the vibrations of a thin and narrow rectangular plate in the presence of
Balakrishnan-Taylor damping (the term σ(zx, zxt)), strong damping (the term ∆2zt), and nonlinear lo-
calized damping (the term γ(x) f (zt)). Bridges are important, and they have long been a part of daily
life for people. Bridges allow for uninterrupted travel over rivers and dangerous terrain, saving time
and fuel while also minimizing traffic congestion, shortening travel distances, and reducing the number
of accidents that may otherwise occur on the road. Nonetheless, difficulties with stability and collapse
brought on by natural disasters like earthquakes and strong winds have been encountered during bridge
building. The study of suspension bridges has been an interest for many researchers who have made
efforts to discover the best designs and models feasible to tackle such challenges. Early results con-
cerning suspension bridges go back to the works of McKenna and Walter [2] and McKenna et al. [3],
where the authors gave a model describing the dynamics of a suspension bridge and proved the exis-
tence of nonlinear oscillations. The asymptotic dynamics and global attractors for coupled suspension
bridge equations were investigated by Bochicchio et al. [4] and Ma and Zhong [5], respectively. Re-
cently, a new model for a suspension bridge through a plate was given in Ferrero and Gazzola [6].
Further details on suspension bridge models can also be found in [7]. The bending and stretching
energies of the model given in [6] were analyzed in [1]. Later, Berchio et al. [8] discussed the struc-
tural instability of nonlinear plates modelling suspension bridges. The finite time blow-up and uniform
stability of a suspension bridge has recently been the subject of various works, and special cases of
(1.1)–(1.3) have been investigated. We mention that all works that will be discussed hereafter treated
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similar problems to (1.1)–(1.3), but without strong damping. In [9], Wang considered problem (1.1)
when κ = α = ξ1 = ξ2 = σ = 0, γ = 1, h(z) = az (a = a(x, y, t) is a sign-changing and bounded
measurable function), and f (z) = z and with an external force. The author provided necessary and suf-
ficient conditions for the uniqueness and existence of global solutions and finite time blow-up of these
solutions. Next, Liu et al. [10] extended the work of Wang [9] by taking f (z) = |z|m−2z(m ≥ 2). In [11],
the authors considered system (1.1) in the case where κ = α = ξ1 = ξ2 = σ = 0 and γ(x) = γ, and with
linear damping, i.e., f (zt) = zt. Using the multiplier techniques, the authors showed a uniform decay of
energy. Afterwards, Cavalcanti et al. [12] (resp., [13]) studied problem (1.1) when κ = α = σ = h = 0
with a localized linear (resp., nonlinear) damping distributed around a neighborhood of the bound-
ary, and showed the exponential decay of energy in both cases. Let us also mention works [14–19],
which dealt with suspension bridges and where other types of damping (structural and viscoelastic)
are presented.

Finally, we recall some recent works on the plate equation that are related to our problem. In [20],
the authors considered the equation

|zt|
κztt + ∆

2z + ∆2ztt −

∫ t

0
k(t − s)∆2z(s) ds = pz ln |z|

in a bounded domain of R2, established the existence of the solutions, and proved explicit and general
decay rate results. Next, Al-Mahdi [21] considered the same problem as in [20] but with infinite
memory. He proved existence and general decay results with a wider class of relaxation functions.
Later on, in [22], the authors proved similar outcomes to [21] by adding a nonlinear damping.

We also cite the recent works about the evolutive plate equation with partially hinged boundary con-
ditions [23,24]. Motivated by all these works, our goal here is to prove the existence of global solutions
as well as the exponential decay of energy of these solutions under the influence of a localized nonlinear
damping distributed in a subset of Ω, combined with Balakrishnan-Taylor and strong damping.

The results presented here are new and different from previous works due to the presence of ∆2zt

and an external force source h(z). Note that the external force generally promotes the blow-up of
the solution.

The organization of the paper proceeds as follows: Section 2 is devoted to fixing notations, recalling
some previous lemmas, and establishing a technical inequality. In Section 3, the well-posedness of
system (1.1)–(1.3) is proved. The exponential stability is shown in the last part.

2. Preliminaries

We define the space
W = {z ∈ H2(Ω) : z = 0 on {0, π} × (−d, d)}

along with the scalar product

⟨z, v⟩ =
∫
Ω

(
zxxvxx − zxxvyy − zyyvxx + µ(zxxvyy + zyyvxx) + 2(1 − µ)zxyvxy

)
dx dy.

It is a known fact that (W, ⟨·, ·⟩) is a Hilbert space, with the norm ∥.∥2W being equivalent to the standard
H2 norm (see [6]).
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Lemma 2.1. ( [6]). Assume 0 < µ < 1
2 and consider g ∈ L2(Ω). Therefore, there is a unique function

z ∈ W such that

⟨z, v⟩ =
∫
Ω

gv dx dy, (2.1)

for all v ∈ W.

The function z belonging to W and fulfilling (2.1) is referred to as the weak solution for the station-
ary problem

∆2z = g,

z(0, y) = zxx(0, y) = z(π, y) = zxx(π, y) = 0, (2.2)

zyy(x,±d) + µzxx(x,±d) = zyyy(x,±d) + (2 − µ)zxxy(x,±d) = 0.

We also bring to mind the subsequent lemma:

Lemma 2.2. ( [9]). Let z ∈ W and consider that 1 ≤ q < +∞. Hence, we have

∥z∥q ≤ C∗∥z∥W , (2.3)

for some positive constant C∗ = C∗(Ω, q) > 0, and, where ∥ · ∥q denotes the usual Lq(Ω)-norm.

The energy of the solutions of (1.1)–(1.3) is determined by

E(t) =
1
κ + 2

∫
Ω

|zt|
κ+2 dx dy +

1
2
∥z∥2W +

α

2
∥zt∥

2
W −
ξ1
2
∥zx∥

2 +
ξ2
4
∥zx∥

4 +

∫
Ω

H(z) dx dy (2.4)

and satisfies

E
′

(t) = −∥zt∥
2
W −

∫
Ω

γ(x) f (zt)zt dx dy − σ
(
1
2

d
dt
∥zx∥

2
)2

≤ 0. (2.5)

Remark 2.3. An interesting observation is that, when ξ1 < 0, the energy E(t) remains nonnegative for
all t ≥ 0. This scenario, unlike real bridges, indicates a stretched plate instead of compressed one in
terms of elasticity. However, in the more realistic case where ξ1 > 0, typical of bridges, the energy is
no longer guaranteed to be nonnegative. This aspect holds significant importance in the stabilization
of distributed systems. To address this issue, we will draw upon concepts from [ [1], Section 3]. We
now introduce the following:

H1
∗ (Ω) := {z ∈ H1(Ω) : z = 0 on {0, π} × (−d, d)},

C∞∗ (Ω) := {z ∈ C∞(Ω) : ∃ ε > 0, z(x, y) = 0 if x ∈ [0, ε] ∪ [π − ε, π]}.

When equipped with the Dirichlet norm below, H1
∗ (Ω) forms a normed space

||z||H1
∗ (Ω) :=

(∫
Ω

|∇z|2 dx dy
)1/2

. (2.6)

Remark 2.4. We introduce H1
∗ (Ω) as the completion of C∞∗ (Ω) with the norm || · ||H1

∗ (Ω). It is apparent
that the inclusion W ↪→ H1

∗ (Ω) is compact and the optimal embedding constant can be expressed by

Λ := min
z∈W

||z||2W
||z||2

H1
∗ (Ω)

.
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Proposition 2.5. ( [1]) Assume that 0 < ξ1 < Λ. Then, E(t) > 0.

Proof. Using Remark 2.4, we obtain the Poincaré-type inequality

||z||2H1
∗ (Ω) ≤ Λ

−1||z||2W , for all z ∈ W. (2.7)

Then, for all z ∈ W, and since

||zx||
2 ≤

∫
Ω

|∇z|2 dx dy ≤ Λ−1 ||z||2W (2.8)

we have

−
ξ1
2
||zx||

2 ≥ −
ξ1
2
Λ−1 ||z||2W

and therefore

1
2
||z||2W −

ξ1
2
||zx||

2 ≥
1
2
||z||2W

(
1 − ξ1Λ−1

)
. (2.9)

Thus, if 0 < ξ1 < Λ, it follows that 1
2 ||z||

2
W −

ξ1
2 ||zx||

2 > 0, and consequently E(t) > 0.

Within the scope of this paper, C represents a generic positive constant, and is not necessarily the
same at different occurrences.

The proof of our main result relies heavily on the next proposition.

Proposition 2.6. The solution of (1.1) verifies∫
Ω

γ(x) f (zt)z dx dy ≤
A
2

∫
Ω

γ(x) f (zt)zt dx dy +
B
2
∥z∥2W (2.10)

for some constants A > 0 and 0 < B < 2.

Proof. Young’s inequality and (2.3) lead to∫
Ω

γ(x) f (zt)z dx dy ≤
∥γ∥∞
4β

∫
Ω

γ(x) f 2(zt) dx dy + β
∫
Ω

|z|2 dx dy

≤
∥γ∥∞
4β

∫
Ω

γ(x) f 2(zt) dx dy + βC2
∗∥z∥

2
W (2.11)

for any β > 0.

The first term on the right hand side of (2.11) can be estimated as follows:∫
Ω

γ(x) f 2(zt) dx dy =
∫
{|zt |≤ε}

γ(x) f 2(zt) dx dy +
∫
{|zt |>ε}

γ(x) f 2(zt) dx dy

≤

∫
{|zt |≤ε}

γ(x)F−1( f (zt)zt) dx dy + c2

∫
{|zt |>ε}

γ(x)| f (zt)||zt| dx dy.

Using hypothesis (H1) and the fact that f (zt)zt > 0, it holds that
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∫
Ω

γ(x) f 2(zt) dx dy ≤ C
∫
{|zt |≤ε}

γ(x) f (zt)zt dx dy + c2

∫
{|zt |>ε}

γ(x) f (zt)zt dx

≤ M
∫
Ω

γ(x) f (zt)zt dx dy (2.12)

where M = max{C, c2}.

By taking β < 1
C2
∗

, (2.10) is satisfied with A = M∥γ∥∞
2β and B = 2βC2

∗ .

3. Well-posedness

In this part, we shall use the Faedo-Galerkin approach to prove that system (1.1)–(1.3) is well-
posed. We have the following result:

Theorem 3.1. Assume (H1)–(H3) and 0 < ξ1 < Λ. Let (z0, z1) ∈ W ×W. Then, problems (1.1)–(1.3)
is well-posed, i.e., for any T > 0, there exists

z ∈ C1([0,T ],W), ztt ∈ L2([0,T ],W)

satisfying ∫
Ω

|zt|
κzttw dx + α⟨ztt,w⟩ + ⟨z,w⟩ +

∫
Ω

(
−ξ1 + ξ2||zx||

2 + σ(zx, zxt)
)

zxwx dx dy

+⟨zt,w⟩ +
∫
Ω

γ(x) f (zt)w dx dy +
∫
Ω

h(z)w dx dy = 0, ∀ w ∈ W (3.1)

z(x, y, 0) = z0(x, y), zt(x, y, 0) = z1(x, y)

for a.e., t ∈ [0,T ].

Remark 3.2. The function z satisfying (3.1) is called a weak solution of (1.1)–(1.3).

Proof. Let {w j}
∞
j=1 be a basis of W and Ep = span{w1,w2, ...,wp}, p ≥ 1. Let us write

zp
0(x, y) =

p∑
j=1

a jw j(x, y), zp
1(x, y) =

p∑
j=1

b jw j(x, y)

such that
zp

0 → z0 in W, and zp
1 → z1 in W. (3.2)

We will seek approximate solutions

zp(x, y, t) =
p∑

j=1

c j(t)w j(x, y)
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satisfying

∫
Ω

|zp
t |
κzp

ttw j dx + α⟨zp
tt,w j⟩ + ⟨zp,w j⟩ +

∫
Ω

(
−ξ1 + ξ2||zp

x ||
2 + σ(zp

x , z
p
xt)

)
zp

x(w j)x dx dy

+⟨zp
t ,w j⟩ +

∫
Ω

γ(x) f (zp
t )w j dx dy +

∫
Ω

h(zp)w j dx dy = 0, ∀ w j ∈ Ep, j = 1, 2, ..., p, (3.3)

zp(x, y, 0) = zp
0(x, y), zp

t (x, y, 0) = zp
1(x, y).

Consequently, we obtain a system of ordinary differential equations for unknown functions c j(t)
[20, 25]. By a classical ODEs result, system (3.3) possesses a solution zp on [0, tp), 0 < tp ≤ T , for
each p ≥ 1.

Now, we multiply (3.3) by c′j(t) and sum over j = 1, ..., p to get

d
dt

Ep(t) = −∥zp
t ∥

2
W −

∫
Ω

γ(x) f (zp
t )zp

t dx dy − σ
(
1
2

d
dt
∥zp

x∥
2
)2

≤ 0 (3.4)

where

Ep(t) =
1
κ + 2

∫
Ω

|zp
t |
κ+2 dx dy +

1
2
∥zp∥2W +

α

2
∥zp

t ∥
2
W −
ξ1
2
∥zp

x∥
2 +
ξ2
4
∥zp

x∥
4 +

∫
Ω

H(zp) dx dy. (3.5)

Our choice of initial conditions implies that Ep(0) is uniformly bounded. Let us integrate (3.4) over
(0, t), 0 < t < tp, which leads to

Ep(t) +
∫ t

0
∥zp

t ∥
2
W ds +

∫ t

0

∫
Ω

γ(x) f (zp
t )zp

t dx dy ds + σ
∫ t

0

(
1
2

d
dt
∥zp

x∥
2
)2

ds ≤ Ep(0) ≤ M1 (3.6)

where M1 represents a positive constant that does not depend on either t or p.
Then, we can replace tp by T and, in addition, we have

zp, zp
t are uniformly bounded in L∞(0,T ; W) (3.7)

Next, we multiply (3.3) by c′′j (t) and we sum over j = 1, ..., p to get∫
Ω

|zp
t |
κ|zp

tt|
2 dx dy + α∥zp

tt∥
2
W

= −

∫
Ω

(
−ξ1 + ξ2||zp

x ||
2 + σ(zp

x , z
p
xt)

)
zp

xzp
xtt dx dy − ⟨zp, zp

tt⟩ (3.8)

−⟨zp
t , z

p
tt⟩ −

∫
Ω

γ(x) f (zp
t )zp

tt dx dy −
∫
Ω

h(zp)zp
tt dx dy.

With the help of The Cauchy-Schwarz inequality, Young’s inequality, and (2.8), we find that∣∣∣∣ ∫
Ω

(
−ξ1 + ξ2||zp

x ||
2 + σ(zp

x , z
p
xt)

)
zp

xzp
xtt dx dy

∣∣∣∣
≤ β∥zp

xtt∥
2 +

C
4β

(
∥zp

x∥
2 + ∥zp

x∥
6 + ∥zp

x∥
4∥zp

xt∥
2
)

≤ βΛ−1∥zp
tt∥

2
W +

CΛ−1

4β

(
∥zp∥2W + ∥z

p∥6W + ∥z
p∥8W + ∥z

p
t ∥

4
W

)
(3.9)

for any β > 0.
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Additionally, Young’s inequality leads to∣∣∣∣⟨zp, zp
tt⟩

∣∣∣∣ ≤ ∥zp∥W∥z
p
tt∥W ≤ β∥z

p
tt∥

2
W +

1
4β
∥zp∥2W , (3.10)

∣∣∣∣⟨zp
t , z

p
tt⟩

∣∣∣∣ ≤ β∥zp
tt∥

2
W +

1
4β
∥zp

t ∥
2
W (3.11)

and by (2.3) and the fact that h is lipschitz with h(0) = 0, we find∣∣∣∣ ∫
Ω

h(zp)zp
tt dx dy

∣∣∣∣ ≤ β∥zp
tt∥

2 +
1

4β

∫
Ω

|h(zp)|2 dx dy

≤ βC2
∗∥z

p
tt∥

2
W +

C2
h

4β

∫
Ω

|zp|2 dx dy

≤ βC2
∗∥z

p
tt∥

2
W +

C2
hC2
∗

4β
∥zp∥2W (3.12)

where Ch is the Lipschitz constant for the function h.
By proceeding as in the proof of Proposition 2.6, one gets that∣∣∣∣ ∫

Ω

γ(x) f (zp
t )zp

tt dx dy
∣∣∣∣ ≤ βC2

∗∥z
p
tt∥

2
W +

C
4β

∫
Ω

γ(x) f (zp
t )zp

t dx dy. (3.13)

Combining (3.8)−(3.13), we see that∫
Ω

|zp
t |
κ|zp

tt|
2 dx dy +

(
α − β(2 + Λ−1 + 2C2

∗)
)
∥zp

tt∥
2
W

≤
1

4β

{ (
1 +CΛ−1 +C2

hC2
∗

)
∥zp∥2W + ∥z

p
t ∥

2
W

}
+

CΛ−1

4β

(
∥zp∥6W + ∥z

p∥8W + ∥z
p
t ∥

4
W

)
. (3.14)

By using (2.9), (3.6), and the definition of Ep(t), we easily see that

∥zp∥2W ≤
2M1

1 − ξ1Λ−1 , ∥z
p
t ∥

2
W ≤

2M1

α
,

which yields∫ T

0
∥zp∥2Wdt ≤

2M1T
1 − ξ1Λ−1 ,

∫ T

0
∥zp

t ∥
2
Wdt ≤

2M1T
α
,

∫ T

0
∥zp∥6Wdt ≤

(
2M1

1 − ξ1Λ−1

)3

T

and ∫ T

0
∥zp∥8Wdt ≤

(
2M1

1 − ξ1Λ−1

)4

T,
∫ T

0
∥zp

t ∥
4
Wdt ≤

4M2
1T
α2 .

Integrating (3.14) over (0,T ) and using the previous estimates, we derive that∫ T

0

∫
Ω

|zp
t |
κ|zp

tt|
2 dx dy dt +

(
α − β(2 + Λ−1 + 2C2

∗)
) ∫ T

0
∥zp

tt∥
2
W dt ≤

CT
4β
. (3.15)
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Choosing β small enough in (3.15), we infer that∫ T

0
∥zp

tt∥
2
W dt ≤ C (3.16)

implying that
zp

tt is uniformly bounded in L2(0,T ; W). (3.17)

From (3.7) and (3.17), we can find a subsequence of (zp), which we continue to label as (zp),
satisfying

zp ⇀ z, zp
t ⇀ zt, weakly star in L∞(0,T ; W) and weakly in L2(0,T ; W) (3.18)

and
zp

tt ⇀ ztt weakly in L2(0,T ; W). (3.19)

Analysis of the nonlinear terms:
Due to the compact embedding W ⊂ L2(Ω), it follows that, up to a subsequence,

zp → z strongly in L2(0,T ; L2(Ω)),

zp → z a.e. in Ω × (0,T ).

Since h is Lipschitz continuous, it holds that

h(zp)→ h(z) a.e., in Ω × (0,T ). (3.20)

On the other hand, the fact that h is Lipschitz and (zp) is bounded in L∞(0,T ; L2(Ω)) implies that
h(zp) is bounded in L∞(0,T ; L2(Ω)). This latter fact combined with (3.20) leads to

h(zp)⇀ h(z) in L2(0,T ; L2(Ω)).

By using (3.7), (3.17), and the Aubin-Lions theorem (see [19]), we have, up to a subsequence, that

zp
t → zt strongly in L2(0,T ; L2(Ω))

and hence
|zp

t |
κzp

t → |zt|
κzt a.e. in Ω × (0,T ). (3.21)

From (2.3) and (3.6), one gets that∥∥∥∥∣∣∣∣zp
t

∣∣∣∣κzp
t

∥∥∥∥2

L2(0,T ;L2(Ω))
≤ C2(κ+1)

∗

∫ T

0
∥zp

t ∥
2(κ+1)
W dt ≤ C2(κ+1)

∗

(
2M1

α

)κ+1

T. (3.22)

Consequently, by (3.21), (3.22), and the Lion’s lemma [19, 26], we see that

|zp
t |
κzp

t ⇀ |zt|
κzt in L2(0,T ; L2(Ω)). (3.23)

Concerning the term γ(x) f (zp
t ), we can see from (3.6) that the sequence γ(x) f (zp

t )zp
t is bounded in

L2(0,T ; L2(Ω)). Then, by (2.12), ( f (zp
t ))p≥1 is bounded in L2

γ(Ω × (0,T )), where L2
γ is the weighted

Lebesgue space. Hence, we get, up to a subsequence, that

f (zp
t )⇀ χ in L2

γ(Ω × (0,T )). (3.24)
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The integration of (3.3) over the interval (0, t) leads to

1
κ + 1

∫
Ω

|zp
t |
κzp

t w j dx dy + α⟨zp
t ,w j⟩ +

∫ t

0
⟨zp,w j⟩ds +

∫ t

0
⟨zp

t ,w j⟩ds

+

∫ t

0

∫
Ω

(
−ξ1 + ξ2||zp

x ||
2 + σ(zp

x , z
p
xt)

)
zp

x(w j)x dx dy ds +
∫ t

0

∫
Ω

γ(x) f (zp
t )w j dx dy ds

+

∫ t

0

∫
Ω

h(zp)w j dx dy ds =
1
κ + 1

∫
Ω

|zp
1 |
κzp

1w j dx dy + α⟨zp
1 ,w j⟩, ∀ j = 1, ..., p.

By letting p→ ∞ and using [14], we get that

1
κ + 1

∫
Ω

|zt|
κztw j dx dy + α⟨zt,w j⟩ −

1
κ + 1

∫
Ω

|z1|
κz1w j dx dy − α⟨z1,w j⟩

= −

∫ t

0
⟨z,w j⟩ds −

∫ t

0
⟨zt,w j⟩ds −

∫ t

0

∫
Ω

(
−ξ1 + ξ2||zx||

2 + σ(zx, zxt)
)

zx(w j)x dx dy ds

−

∫ t

0

∫
Ω

γ(x)χw j dx dy ds −
∫ t

0

∫
Ω

h(z)w j dx dy ds, ∀ j = 1, ..., p. (3.25)

Consequently, we conclude that (3.25) holds for all w ∈ W. Moreover, within (3.25), the expressions
on the righthand side are absolutely continuous, and hence we can deduce that (3.25) is differentiable
for almost every t ≥ 0. Thus, we derive that∫

Ω

|zt|
κzttw dx + α⟨ztt,w⟩ + ⟨z,w⟩ +

∫
Ω

(
−ξ1 + ξ2||zx||

2 + σ(zx, zxt)
)

zxwx dx dy

+⟨zt,w⟩ +
∫
Ω

γ(x)χw dx dy +
∫
Ω

h(z)w dx dy = 0, ∀ w ∈ W. (3.26)

Next, by using the same ideas as in [18] (where it was showed that χ = |ut|
mut in the proof of

Theorem 3.2 of [18]), we prove that χ = f (zt), and then (3.26) turns to∫
Ω

|zt|
κzttw dx + α⟨ztt,w⟩ + ⟨z,w⟩ +

∫
Ω

(
−ξ1 + ξ2||zx||

2 + σ(zx, zxt)
)

zxwx dx dy

+⟨zt,w⟩ +
∫
Ω

γ(x) f (zt)w dx dy +
∫
Ω

h(z)w dx dy = 0, ∀ w ∈ W.

In terms of the initial conditions, we may also apply (3.18) and (3.19) in a standard way to con-
firm that

z(x, y, 0) = z0(x, y) and zt(x, y, 0) = z1(x, y), (x, y) ∈ Ω.

Moreover, we can see that
||zt||

2
W ≤ 2E(t) ≤ 2E(0)

and

||z||2W ≤
2

1 − ξ1Λ−1

(
1
2
||z||2W −

ξ1
2
||zx||

2
)
≤

2
1 − ξ1Λ−1 E(t) ≤

2
1 − ξ1Λ−1 E(0)

which means that the solution z(t) of (1.1)–(1.3) is bounded and global.
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4. Exponential stability

We start this section by defining the functional

θ(t) =
1
κ + 1

∫
Ω

z|zt|
κzt dx dy + α⟨z, zt⟩ +

1
2
||z||2W . (4.1)

We hen have the following:

Proposition 4.1. Suppose that 0 < ξ1 < Λ. Then, we have

|θ(t)| ≤ λE(t), ∀ t ≥ 0 (4.2)

for some constant λ > 0.

Proof. Thanks to the Cauchy-Schwarz inequality, Young’s inequality, and (2.3), we obtain

|θ(t)| ≤
1
κ + 1

∫
Ω

|z||zt|
κ+1 dx dy + α||z||W ||zt||W +

1
2
||z||2W

≤
1

2(κ + 1)

∫
Ω

|zt|
2(κ+1) dx dy +

1
2(κ + 1)

∫
Ω

|z|2 dx dy +
α

2
||zt||

2
W +

1
2

(1 + α) ||z||2W

≤
C2(κ+1)
∗

2(κ + 1)
||zt||

2(κ+1)
W +

C2
∗

2(κ + 1)
||z||2W +

α

2
||zt||

2
W +

1
2

(1 + α) ||z||2W

≤
C2(κ+1)
∗

2(κ + 1)

(
2E(0)
α

)κ
||zt||

2
W +

1
2

(
1 + α +

C2
∗

κ + 1

)
||z||2W +

α

2
||zt||

2
W

≤ λE(t),

with λ = max
{ (

1 + α + C2
∗

κ+1

)
1

1−ξ1Λ−1 , α +
C2(κ+1)
∗

κ+1

(
2E(0)
α

)κ }
.

Let η be a positive constant satisfying, for the moment,

η <
1
λ
. (4.3)

From (4.2) and (4.3), the functional L defined by

L(t) = E(t) + ηθ(t)

satisfies L(t) ∼ E(t), and more precisely we have

(1 − λη)E(t) ≤ L(t) ≤ (1 + λη)E(t). (4.4)

Lemma 4.2. Assume (H1)–(H3) and 0 < ξ1 < Λ. Therefore, there exists a constant δ > 0 such that

L
′

(t) ≤ −δE(t), ∀ t ≥ 0. (4.5)
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Proof. By combining (1.1) and (2.5), we infer that

L
′

(t) = E
′

(t) + ηθ
′

(t)

= −∥zt∥
2
W −

∫
Ω

γ(x) f (zt)zt dx dy − σ
(
1
2

d
dt
∥zx∥

2
)2

+η

∫
Ω

|zt|
κzttz dx dy +

η

κ + 1

∫
Ω

|zt|
κ+2 dx dy + ηα∥zt∥

2
W + ηα⟨z, ztt⟩ + η⟨z, zt⟩

= −∥zt∥
2
W −

∫
Ω

γ(x) f (zt)zt dx dy − σ
(
1
2

d
dt
∥zx∥

2
)2

+
η

κ + 1

∫
Ω

|zt|
κ+2 dx dy

−ηα⟨z, ztt⟩ − η∥z∥2W − η
(
−ξ1 + ξ2||zx||

2 + σ(zx, zxt)
)
||zx||

2

−η⟨z, zt⟩ + ηα∥zt∥
2
W + ηα⟨z, ztt⟩ + η⟨z, zt⟩

−η

∫
Ω

γ(x) f (zt)z dx dy − η
∫
Ω

h(z)z dx dy

= −
η

κ + 2

∫
Ω

|zt|
κ+2 dx dy +

η

κ + 2

∫
Ω

|zt|
κ+2 dx dy +

η

κ + 1

∫
Ω

|zt|
κ+2 dx dy

−∥zt∥
2
W + ηα∥zt∥

2
W + ηξ1||zx||

2 − ηξ2||zx||
4 − η

∫
Ω

H(z) dx dy

−σ ((zx, zxt))2
− ησ||zx||

2(zx, zxt) − η∥z∥2W

−

∫
Ω

γ(x) f (zt)zt dx dy − η
∫
Ω

γ(x) f (zt)z dx dy − η
∫
Ω

[h(z)z − H(z)] dx dy. (4.6)

By (2.3), we can easily check that∫
Ω

|zt|
κ+2 dx dy ≤ Cκ+2

∗

(
2E(0)
α

) κ
2

∥zt∥
2
W .

Therefore, it holds that

η

κ + 2

∫
Ω

|zt|
κ+2 dx dy +

η

κ + 1

∫
Ω

|zt|
κ+2 dx dy − ||zt||

2
W + ηα||zt||

2
W

≤ − (1 − η(α + M2)) ||zt||
2
W (4.7)

where M2 = Cκ+2
∗

(
2E(0)
α

) κ
2
(

1
κ+2 +

1
κ+1

)
.

By assumption (H3), we see that ∫
Ω

[h(z)z − H(z)] dx dy ≥ 0.
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Moreover, we have

(zx, zxt)2 + η||zx||
2(zx, zxt)

=

(
(zx, zxt) +

η

2
||zx||

2
)2
−
η2

4
||zx||

4

and then we obtain

−σ(zx, zxt)2 − ση||zx||
2(zx, zxt) ≤

ση2

4
||zx||

4.

Finally, using Proposition 2.6, we have∣∣∣∣ ∫
Ω

γ(x) f (zt)z dx dy
∣∣∣∣ ≤ A

2

∫
Ω

γ(x) f (zt)zt dx dy +
B
2
||z||2W .

Using the estimates above, we find that

L
′

(t) ≤ − (1 − η(1 + M2)) ||zt||
2
W −

η

κ + 2

∫
Ω

|zt|
κ+2 dx dy + ηξ1||zx||

2 − ηξ2||zx||
4

−η

∫
Ω

H(z) dx dy +
ση2

4
||zx||

4 −

∫
Ω

γ(x) f (zt)zt dx dy

+
ηA
2

∫
Ω

γ(x) f (zt)zt dx dy +
ηB
2
||z||2W − η||z||

2
W

≤ − (1 − η(1 + M2)) ||zt||
2
W −

η

κ + 2

∫
Ω

|zt|
κ+2 dx dy − η

(
1 −

B
2

)
||z||2W + ηξ1||zx||

2

−η
(
ξ2 −
ση

4

)
||zx||

4 − η

∫
Ω

H(z) dx dy −
(
1 −
ηA
2

) ∫
Ω

γ(x) f (zt)zt dx dy.

At this point, we pick up η satisfying (4.3) and

η < min
{ 1
1 + M2

,
4ξ2
σ
,

2
A

}
and since B < 2, then it holds that 1− η(1+M2) > 0, 1− B

2 > 0, ξ2 −
ση

4 > 0 and 1− ηA2 > 0. By taking

δ = min
{

(1 − η(1 + M2))
2
α
, η, 2η(1 −

B
2

),
4η
ξ2

(
ξ2 −
ση

4

)}
we get the desired inequality (4.5).

The following theorem establishes the uniform stability of system (1.1)–(1.3).

Theorem 4.3. Assume (H1)–(H3) and 0 < ξ1 < Λ. Then, the energy of the solutions of (1.1)–(1.3)
decays exponentially, i.e., there exist positive constants b and ν such that

E(t) ≤ bE(0)e−νt, t ≥ 0. (4.8)
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Proof. By using (4.4) and (4.5), one finds that

L
′

(t) ≤ −δE(t) ≤ −
δ

1 + λη
L(t)

which implies that
L
′

(s)
L(s)

≤ −
δ

1 + λη
, ∀ s ≥ 0.

Integrating the last inequality over (0, t), one has

ln
(
L(t)
L(0)

)
≤ −

δ

1 + λη
t.

Consequently,
L(t) ≤ L(0)e−

δt
1+λη .

Once more, relying on (4.4), we arrive at

E(t) ≤
1

1 − λη
L(t) ≤

1
1 − λη

L(0)e−
δt

1+λη ≤
1 + λη
1 − λη

E(0)e−
δt

1+λη .

Hence, (4.8) holds true with b = 1+λη
1−λη and ν = δ

1+λη .

5. Conclusions

In this paper, we focus on the study of the asymptotic behavior of the energy associated with a
nonlinear problem in a rectangular domain, subject to Balakrishnan-Taylor, strong, and localized non-
linear damping and with the presence of a source term. This equation describes the deformation of the
deck of either a footbridge or a suspension bridge, which is hinged along its short edges and has free
vibrations on the remaining portion of the boundary. As a future work, we can study this problem with
the presence of fractional damping [27–29].
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