Research article

Some elementary properties of Laurent phenomenon algebras

  • Received: 23 November 2021 Revised: 20 April 2022 Accepted: 24 April 2022 Published: 06 June 2022
  • Let $ \Sigma $ be a Laurent phenomenon (LP) seed of rank $ n $, $ \mathcal{A}(\Sigma) $, $ \mathcal{U}(\Sigma) $, and $ \mathcal{L}(\Sigma) $ be its corresponding Laurent phenomenon algebra, upper bound and lower bound respectively. We prove that each seed of $ \mathcal{A}(\Sigma) $ is uniquely defined by its cluster and any two seeds of $ \mathcal{A}(\Sigma) $ with $ n-1 $ common cluster variables are connected with each other by one step of mutation. The method in this paper also works for (totally sign-skew-symmetric) cluster algebras. Moreover, we show that $ \mathcal{U}(\Sigma) $ is invariant under seed mutations when each exchange polynomials coincides with its exchange Laurent polynomials of $ \Sigma $. Besides, we obtain the standard monomial bases of $ \mathcal{L}(\Sigma) $. We also prove that $ \mathcal{U}(\Sigma) $ coincides with $ \mathcal{L}(\Sigma) $ under certain conditions.

    Citation: Qiuning Du, Fang Li. Some elementary properties of Laurent phenomenon algebras[J]. Electronic Research Archive, 2022, 30(8): 3019-3041. doi: 10.3934/era.2022153

    Related Papers:

  • Let $ \Sigma $ be a Laurent phenomenon (LP) seed of rank $ n $, $ \mathcal{A}(\Sigma) $, $ \mathcal{U}(\Sigma) $, and $ \mathcal{L}(\Sigma) $ be its corresponding Laurent phenomenon algebra, upper bound and lower bound respectively. We prove that each seed of $ \mathcal{A}(\Sigma) $ is uniquely defined by its cluster and any two seeds of $ \mathcal{A}(\Sigma) $ with $ n-1 $ common cluster variables are connected with each other by one step of mutation. The method in this paper also works for (totally sign-skew-symmetric) cluster algebras. Moreover, we show that $ \mathcal{U}(\Sigma) $ is invariant under seed mutations when each exchange polynomials coincides with its exchange Laurent polynomials of $ \Sigma $. Besides, we obtain the standard monomial bases of $ \mathcal{L}(\Sigma) $. We also prove that $ \mathcal{U}(\Sigma) $ coincides with $ \mathcal{L}(\Sigma) $ under certain conditions.



    加载中


    [1] S. Fomin, A. Zelevinsky, Cluster algebras I. foundations, J. Amer. Math. Soc., 15 (2002), 497–529. https://doi.org/10.1090/S0894-0347-01-00385-X doi: 10.1090/S0894-0347-01-00385-X
    [2] P. Cao, F. Li, Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, J. Algebra, 493 (2018), 57–78. https://doi.org/10.1016/j.jalgebra.2017.08.034 doi: 10.1016/j.jalgebra.2017.08.034
    [3] M. Gekhtman, M. Shapiro, A. Vainshtein, On the properties of the exchange graph of a cluster algebra, Math. Res. Lett., 15 (2008), 321–330. https://doi.org/10.4310/MRL.2008.v15.n2.a10 doi: 10.4310/MRL.2008.v15.n2.a10
    [4] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), 1–52. https://doi.org/10.1215/S0012-7094-04-12611-9 doi: 10.1215/S0012-7094-04-12611-9
    [5] G. Muller, Locally acyclic cluster algebras, Adv. Math., 233 (2013), 207–247. https://doi.org/10.1016/j.aim.2012.10.002 doi: 10.1016/j.aim.2012.10.002
    [6] L. Bai, X. Chen, M. Ding, F. Xu, On the generalized cluster algebras of geometric types, Symmetry Integr. Geom. Methods Appl., 16 (2020), 14. https://doi.org/10.3842/SIGMA.2020.092 doi: 10.3842/SIGMA.2020.092
    [7] T. Lam, P. Pylyavskyy, Laurent phenomenon algebras, Camb. J. Math., 4 (2016), 121–162. https://doi.org/10.4310/CJM.2016.v4.n1.a2
    [8] L. Chekhov, M. Shapiro, Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. IMRN, 2014 (2014), 2746–2772. https://doi.org/10.1093/imrn/rnt016 doi: 10.1093/imrn/rnt016
    [9] M. Gekhtman, M. Shapiro, A. Vainshtein, Drinfeld double of GLn and generalized cluster structures, Proc. Lond. Math. Soc., 116 (2018), 429–484. https://doi.org/10.1112/plms.12086 doi: 10.1112/plms.12086
    [10] T. Nakanishi, Structure of seeds in generalized cluster algebras, Pac. J. Math., 277 (2015), 201–218. https://doi.org/10.2140/pjm.2015.277.201 doi: 10.2140/pjm.2015.277.201
    [11] J. Wilson, Laurent Phenomenon Algebras arising from surfaces, Int. Math. Res. Not. IMRN, (2018), 3800–3833. https://doi.org/10.1093/imrn/rnw341
    [12] M. Huang, F. Li, Unfolding of sign-skew-symmetric cluster algebras and its applications to positivity and F-polynomials, Adv. Math., 340 (2018), 221–283. https://doi.org/10.1016/j.aim.2018.10.008 doi: 10.1016/j.aim.2018.10.008
    [13] S. Fomin, A. Zelevinsky, Cluster algebras: Notes for the CDM-03 conference, Curr. Dev. Math., (2003), 1–34. https://doi.org/10.4310/CDM.2003.v2003.n1.a1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1058) PDF downloads(60) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog