Let $ \Sigma $ be a Laurent phenomenon (LP) seed of rank $ n $, $ \mathcal{A}(\Sigma) $, $ \mathcal{U}(\Sigma) $, and $ \mathcal{L}(\Sigma) $ be its corresponding Laurent phenomenon algebra, upper bound and lower bound respectively. We prove that each seed of $ \mathcal{A}(\Sigma) $ is uniquely defined by its cluster and any two seeds of $ \mathcal{A}(\Sigma) $ with $ n-1 $ common cluster variables are connected with each other by one step of mutation. The method in this paper also works for (totally sign-skew-symmetric) cluster algebras. Moreover, we show that $ \mathcal{U}(\Sigma) $ is invariant under seed mutations when each exchange polynomials coincides with its exchange Laurent polynomials of $ \Sigma $. Besides, we obtain the standard monomial bases of $ \mathcal{L}(\Sigma) $. We also prove that $ \mathcal{U}(\Sigma) $ coincides with $ \mathcal{L}(\Sigma) $ under certain conditions.
Citation: Qiuning Du, Fang Li. Some elementary properties of Laurent phenomenon algebras[J]. Electronic Research Archive, 2022, 30(8): 3019-3041. doi: 10.3934/era.2022153
Let $ \Sigma $ be a Laurent phenomenon (LP) seed of rank $ n $, $ \mathcal{A}(\Sigma) $, $ \mathcal{U}(\Sigma) $, and $ \mathcal{L}(\Sigma) $ be its corresponding Laurent phenomenon algebra, upper bound and lower bound respectively. We prove that each seed of $ \mathcal{A}(\Sigma) $ is uniquely defined by its cluster and any two seeds of $ \mathcal{A}(\Sigma) $ with $ n-1 $ common cluster variables are connected with each other by one step of mutation. The method in this paper also works for (totally sign-skew-symmetric) cluster algebras. Moreover, we show that $ \mathcal{U}(\Sigma) $ is invariant under seed mutations when each exchange polynomials coincides with its exchange Laurent polynomials of $ \Sigma $. Besides, we obtain the standard monomial bases of $ \mathcal{L}(\Sigma) $. We also prove that $ \mathcal{U}(\Sigma) $ coincides with $ \mathcal{L}(\Sigma) $ under certain conditions.
[1] | S. Fomin, A. Zelevinsky, Cluster algebras I. foundations, J. Amer. Math. Soc., 15 (2002), 497–529. https://doi.org/10.1090/S0894-0347-01-00385-X doi: 10.1090/S0894-0347-01-00385-X |
[2] | P. Cao, F. Li, Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, J. Algebra, 493 (2018), 57–78. https://doi.org/10.1016/j.jalgebra.2017.08.034 doi: 10.1016/j.jalgebra.2017.08.034 |
[3] | M. Gekhtman, M. Shapiro, A. Vainshtein, On the properties of the exchange graph of a cluster algebra, Math. Res. Lett., 15 (2008), 321–330. https://doi.org/10.4310/MRL.2008.v15.n2.a10 doi: 10.4310/MRL.2008.v15.n2.a10 |
[4] | A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), 1–52. https://doi.org/10.1215/S0012-7094-04-12611-9 doi: 10.1215/S0012-7094-04-12611-9 |
[5] | G. Muller, Locally acyclic cluster algebras, Adv. Math., 233 (2013), 207–247. https://doi.org/10.1016/j.aim.2012.10.002 doi: 10.1016/j.aim.2012.10.002 |
[6] | L. Bai, X. Chen, M. Ding, F. Xu, On the generalized cluster algebras of geometric types, Symmetry Integr. Geom. Methods Appl., 16 (2020), 14. https://doi.org/10.3842/SIGMA.2020.092 doi: 10.3842/SIGMA.2020.092 |
[7] | T. Lam, P. Pylyavskyy, Laurent phenomenon algebras, Camb. J. Math., 4 (2016), 121–162. https://doi.org/10.4310/CJM.2016.v4.n1.a2 |
[8] | L. Chekhov, M. Shapiro, Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. IMRN, 2014 (2014), 2746–2772. https://doi.org/10.1093/imrn/rnt016 doi: 10.1093/imrn/rnt016 |
[9] | M. Gekhtman, M. Shapiro, A. Vainshtein, Drinfeld double of GLn and generalized cluster structures, Proc. Lond. Math. Soc., 116 (2018), 429–484. https://doi.org/10.1112/plms.12086 doi: 10.1112/plms.12086 |
[10] | T. Nakanishi, Structure of seeds in generalized cluster algebras, Pac. J. Math., 277 (2015), 201–218. https://doi.org/10.2140/pjm.2015.277.201 doi: 10.2140/pjm.2015.277.201 |
[11] | J. Wilson, Laurent Phenomenon Algebras arising from surfaces, Int. Math. Res. Not. IMRN, (2018), 3800–3833. https://doi.org/10.1093/imrn/rnw341 |
[12] | M. Huang, F. Li, Unfolding of sign-skew-symmetric cluster algebras and its applications to positivity and F-polynomials, Adv. Math., 340 (2018), 221–283. https://doi.org/10.1016/j.aim.2018.10.008 doi: 10.1016/j.aim.2018.10.008 |
[13] | S. Fomin, A. Zelevinsky, Cluster algebras: Notes for the CDM-03 conference, Curr. Dev. Math., (2003), 1–34. https://doi.org/10.4310/CDM.2003.v2003.n1.a1 |