Let $ X $ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of nonpositive curvature, and in particular all known examples of non-compact harmonic manifolds except for the flat spaces. We use the Fourier transform from [
Citation: Kingshook Biswas, Rudra P. Sarkar. Dynamics of $ L^p $ multipliers on harmonic manifolds[J]. Electronic Research Archive, 2022, 30(8): 3042-3057. doi: 10.3934/era.2022154
Let $ X $ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of nonpositive curvature, and in particular all known examples of non-compact harmonic manifolds except for the flat spaces. We use the Fourier transform from [
[1] | K. Biswas, G. Knieper, N. Peyerimhoff, The Fourier transform on harmonic manifolds of purely exponential volume growth, J. Geom. Anal., 31 (2021), 126–163. https://doi.org/10.1007/s12220-019-00253-9 doi: 10.1007/s12220-019-00253-9 |
[2] | G. Godefroy, J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98 (1991), 229–269. |
[3] | F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009. |
[4] | K. G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011. |
[5] | G. Herzog, On a universality of the heat equation, Math. Nachr., 188 (1997), 169–171. https://doi.org/10.1002/mana.19971880110 doi: 10.1002/mana.19971880110 |
[6] | R. deLaubenfels, H. Emamirad, K. G. Grosse-Erdmann, Chaos for semigroups of unbounded operators, Math. Nachr., 261/262 (2003), 47–59. https://doi.org/10.1002/mana.200310112 doi: 10.1002/mana.200310112 |
[7] | J. A. Conejero, A. Peris, M. Trujillo, Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2943–2947. https://doi.org/10.1142/S0218127410027489 doi: 10.1142/S0218127410027489 |
[8] | L. Ji, A. Weber, ${L}^p$ spectral theory and heat dynamics of locally symmetric spaces, J. Funct. Anal., 258 (2010), 1121–1139. |
[9] | L. Ji, A. Weber, Dynamics of the heat semigroup on symmetric spaces, Ergod. Theory Dyn. Syst., 30 (2010), 457–468. https://doi.org/10.1017/S0143385709000133 doi: 10.1017/S0143385709000133 |
[10] | R. P. Sarkar, Chaotic dynamics of the heat semigroup on the Damek-Ricci spaces, Israel J. Math., 198 (2013), 487–508. https://doi.org/10.1007/s11856-013-0035-6 doi: 10.1007/s11856-013-0035-6 |
[11] | E. Damek, F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc., N.S., 27 (1992), 139–142. https://doi.org/10.1090/S0273-0979-1992-00293-8 doi: 10.1090/S0273-0979-1992-00293-8 |
[12] | M. Pramanik, R. P. Sarkar, Chaotic dynamics of the heat semigroup on Riemannian symmetric spaces, J. Funct. Anal., 266 (2014), 2867–2909. https://doi.org/10.1016/j.jfa.2013.12.026 doi: 10.1016/j.jfa.2013.12.026 |
[13] | L. Ji, A. Weber, The ${L}^p$ spectrum and heat dynamics of locally symmetric spaces of higher rank, Ergod. Theory Dyn. Syst., 35 (2015), 1524–1545. https://doi.org/10.1017/etds.2014.3 doi: 10.1017/etds.2014.3 |
[14] | S. K. Ray, R. P. Sarkar, Chaotic behaviour of the Fourier multipliers on Riemannian symmetric spaces of noncompact type, Preprint, https://arXiv.org/pdf/1805.10048.pdf, 2017. |
[15] | E. T. Copson, H. S. Ruse, Harmonic Riemannian spaces, Proc. Roy. Soc. Edinburgh, 60 (1940), 117–133. https://doi.org/10.1017/S0370164600020095 |
[16] | A. C. Walker. On Lichnerowicz's conjecture for harmonic 4-spaces. J. London Math. Soc., 24 (1948), 317–329. |
[17] | Y. Nikolayevsky, Two theorems on harmonic manifolds, Comment. Math. Helv., 80 (2005), 29–50. https://doi.org/10.4171/CMH/2 doi: 10.4171/CMH/2 |
[18] | Z. Szabo, The Lichnerowicz conjecture on harmonic manifolds, J. Differ. Geometry, 31 (1990), 1–28. https://doi.org/10.4310/jdg/1214444087 doi: 10.4310/jdg/1214444087 |
[19] | J. Heber, On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal., 16 (2006), pages 869–890. https://doi.org/10.1007/s00039-006-0569-4 doi: 10.1007/s00039-006-0569-4 |
[20] | G. Knieper, N. Peyerimhoff, Noncompact harmonic manifolds, Oberwolfach Preprints, https://arXiv.org/pdf/1302.3841.pdf, 2013. |
[21] | K. Biswas, The Fourier transform on negatively curved harmonic manifolds, Preprint, https://arXiv.org/pdf/1802.07236.pdf, 2018. |
[22] | G. Knieper, New results on noncompact harmonic manifolds, Comment. Math. Helv., 87 (2012), 669–703. https://doi.org/10.4171/CMH/265 doi: 10.4171/CMH/265 |
[23] | M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, ISSN 0072-7830; 319, 1999. https://doi.org/10.1007/978-3-662-12494-9 |
[24] | E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511566158 |
[25] | R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52 (1983), 48–79. https://doi.org/10.1016/0022-1236(83)90090-3 doi: 10.1016/0022-1236(83)90090-3 |