Research article

Dynamics of $ L^p $ multipliers on harmonic manifolds

  • Received: 25 July 2021 Revised: 20 April 2022 Accepted: 18 May 2022 Published: 08 June 2022
  • Let $ X $ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of nonpositive curvature, and in particular all known examples of non-compact harmonic manifolds except for the flat spaces. We use the Fourier transform from [1] to investigate the dynamics on $ L^p(X) $ for $ p > 2 $ of certain bounded linear operators $ T : L^p(X) \to L^p(X) $ which we call "$ L^p $-multipliers" in accordance with standard terminology. Examples of $ L^p $-multipliers are given by the operator of convolution with an $ L^1 $ radial function, or more generally convolution with a finite radial measure. In particular elements of the heat semigroup $ e^{t\Delta} $ act as multipliers. Given $ 2 < p < \infty $, we show that for any $ L^p $-multiplier $ T $ which is not a scalar multiple of the identity, there is an open set of values of $ \nu \in {\mathbb C} $ for which the operator $ \frac{1}{\nu} T $ is chaotic on $ L^p(X) $ in the sense of Devaney, i.e., topologically transitive and with periodic points dense. Moreover such operators are topologically mixing. We also show that there is a constant $ c_p > 0 $ such that for any $ c \in {\mathbb C} $ with $ \operatorname{Re} c > c_p $, the action of the shifted heat semigroup $ e^{ct} e^{t\Delta} $ on $ L^p(X) $ is chaotic. These results generalize the corresponding results for rank one symmetric spaces of noncompact type and harmonic $ NA $ groups (or Damek-Ricci spaces).

    Citation: Kingshook Biswas, Rudra P. Sarkar. Dynamics of $ L^p $ multipliers on harmonic manifolds[J]. Electronic Research Archive, 2022, 30(8): 3042-3057. doi: 10.3934/era.2022154

    Related Papers:

  • Let $ X $ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of nonpositive curvature, and in particular all known examples of non-compact harmonic manifolds except for the flat spaces. We use the Fourier transform from [1] to investigate the dynamics on $ L^p(X) $ for $ p > 2 $ of certain bounded linear operators $ T : L^p(X) \to L^p(X) $ which we call "$ L^p $-multipliers" in accordance with standard terminology. Examples of $ L^p $-multipliers are given by the operator of convolution with an $ L^1 $ radial function, or more generally convolution with a finite radial measure. In particular elements of the heat semigroup $ e^{t\Delta} $ act as multipliers. Given $ 2 < p < \infty $, we show that for any $ L^p $-multiplier $ T $ which is not a scalar multiple of the identity, there is an open set of values of $ \nu \in {\mathbb C} $ for which the operator $ \frac{1}{\nu} T $ is chaotic on $ L^p(X) $ in the sense of Devaney, i.e., topologically transitive and with periodic points dense. Moreover such operators are topologically mixing. We also show that there is a constant $ c_p > 0 $ such that for any $ c \in {\mathbb C} $ with $ \operatorname{Re} c > c_p $, the action of the shifted heat semigroup $ e^{ct} e^{t\Delta} $ on $ L^p(X) $ is chaotic. These results generalize the corresponding results for rank one symmetric spaces of noncompact type and harmonic $ NA $ groups (or Damek-Ricci spaces).



    加载中


    [1] K. Biswas, G. Knieper, N. Peyerimhoff, The Fourier transform on harmonic manifolds of purely exponential volume growth, J. Geom. Anal., 31 (2021), 126–163. https://doi.org/10.1007/s12220-019-00253-9 doi: 10.1007/s12220-019-00253-9
    [2] G. Godefroy, J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98 (1991), 229–269.
    [3] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
    [4] K. G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
    [5] G. Herzog, On a universality of the heat equation, Math. Nachr., 188 (1997), 169–171. https://doi.org/10.1002/mana.19971880110 doi: 10.1002/mana.19971880110
    [6] R. deLaubenfels, H. Emamirad, K. G. Grosse-Erdmann, Chaos for semigroups of unbounded operators, Math. Nachr., 261/262 (2003), 47–59. https://doi.org/10.1002/mana.200310112 doi: 10.1002/mana.200310112
    [7] J. A. Conejero, A. Peris, M. Trujillo, Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2943–2947. https://doi.org/10.1142/S0218127410027489 doi: 10.1142/S0218127410027489
    [8] L. Ji, A. Weber, ${L}^p$ spectral theory and heat dynamics of locally symmetric spaces, J. Funct. Anal., 258 (2010), 1121–1139.
    [9] L. Ji, A. Weber, Dynamics of the heat semigroup on symmetric spaces, Ergod. Theory Dyn. Syst., 30 (2010), 457–468. https://doi.org/10.1017/S0143385709000133 doi: 10.1017/S0143385709000133
    [10] R. P. Sarkar, Chaotic dynamics of the heat semigroup on the Damek-Ricci spaces, Israel J. Math., 198 (2013), 487–508. https://doi.org/10.1007/s11856-013-0035-6 doi: 10.1007/s11856-013-0035-6
    [11] E. Damek, F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc., N.S., 27 (1992), 139–142. https://doi.org/10.1090/S0273-0979-1992-00293-8 doi: 10.1090/S0273-0979-1992-00293-8
    [12] M. Pramanik, R. P. Sarkar, Chaotic dynamics of the heat semigroup on Riemannian symmetric spaces, J. Funct. Anal., 266 (2014), 2867–2909. https://doi.org/10.1016/j.jfa.2013.12.026 doi: 10.1016/j.jfa.2013.12.026
    [13] L. Ji, A. Weber, The ${L}^p$ spectrum and heat dynamics of locally symmetric spaces of higher rank, Ergod. Theory Dyn. Syst., 35 (2015), 1524–1545. https://doi.org/10.1017/etds.2014.3 doi: 10.1017/etds.2014.3
    [14] S. K. Ray, R. P. Sarkar, Chaotic behaviour of the Fourier multipliers on Riemannian symmetric spaces of noncompact type, Preprint, https://arXiv.org/pdf/1805.10048.pdf, 2017.
    [15] E. T. Copson, H. S. Ruse, Harmonic Riemannian spaces, Proc. Roy. Soc. Edinburgh, 60 (1940), 117–133. https://doi.org/10.1017/S0370164600020095
    [16] A. C. Walker. On Lichnerowicz's conjecture for harmonic 4-spaces. J. London Math. Soc., 24 (1948), 317–329.
    [17] Y. Nikolayevsky, Two theorems on harmonic manifolds, Comment. Math. Helv., 80 (2005), 29–50. https://doi.org/10.4171/CMH/2 doi: 10.4171/CMH/2
    [18] Z. Szabo, The Lichnerowicz conjecture on harmonic manifolds, J. Differ. Geometry, 31 (1990), 1–28. https://doi.org/10.4310/jdg/1214444087 doi: 10.4310/jdg/1214444087
    [19] J. Heber, On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal., 16 (2006), pages 869–890. https://doi.org/10.1007/s00039-006-0569-4 doi: 10.1007/s00039-006-0569-4
    [20] G. Knieper, N. Peyerimhoff, Noncompact harmonic manifolds, Oberwolfach Preprints, https://arXiv.org/pdf/1302.3841.pdf, 2013.
    [21] K. Biswas, The Fourier transform on negatively curved harmonic manifolds, Preprint, https://arXiv.org/pdf/1802.07236.pdf, 2018.
    [22] G. Knieper, New results on noncompact harmonic manifolds, Comment. Math. Helv., 87 (2012), 669–703. https://doi.org/10.4171/CMH/265 doi: 10.4171/CMH/265
    [23] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, ISSN 0072-7830; 319, 1999. https://doi.org/10.1007/978-3-662-12494-9
    [24] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511566158
    [25] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52 (1983), 48–79. https://doi.org/10.1016/0022-1236(83)90090-3 doi: 10.1016/0022-1236(83)90090-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1205) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog