In this article, we investigate some new positivity and negativity results for some families of discrete delta fractional difference operators. A basic result is an identity which will prove to be a useful tool for establishing the main results. Our first main result considers the positivity and negativity of the discrete delta fractional difference operator of the Riemann-Liouville type under two main conditions. Similar results are then obtained for the discrete delta fractional difference operator of the Liouville-Caputo type. Finally, we provide a specific example in which the chosen function becomes nonincreasing on a time set.
Citation: Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu, Ehab E. Elattar, Y. S. Hamed. Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types[J]. Electronic Research Archive, 2022, 30(8): 3058-3070. doi: 10.3934/era.2022155
In this article, we investigate some new positivity and negativity results for some families of discrete delta fractional difference operators. A basic result is an identity which will prove to be a useful tool for establishing the main results. Our first main result considers the positivity and negativity of the discrete delta fractional difference operator of the Riemann-Liouville type under two main conditions. Similar results are then obtained for the discrete delta fractional difference operator of the Liouville-Caputo type. Finally, we provide a specific example in which the chosen function becomes nonincreasing on a time set.
[1] | C. Goodrich, A. Peterson, Discrete Fractional Calculus, Springer, Berlin, 2015. https://doi.org/10.1007/978-3-319-25562-0 |
[2] | F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. https://doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A |
[3] | F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fract. Equations, 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494 |
[4] | F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9. |
[5] | C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869 |
[6] | C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Am. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895 |
[7] | C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022 |
[8] | A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049 |
[9] | H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ., Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497 |
[10] | Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Comput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884 |
[11] | R. W. Ibrahim, H. Natiq, A. Alkhayyat, A. K. Farhan, N. M. G. Al-Saidi, D. Baleanu, Image encryption algorithm based on new fractional beta chaotic maps, Comput. Model. Eng. Sci., 132 (2022). https://doi.org/10.32604/cmes.2022.018343 |
[12] | L. L. Huang, J. H. Park, G. C. Wu, Z. W. Mo, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appl. Math., 370 (2020), 112633. https://doi.org/10.1016/j.cam.2019.112633 doi: 10.1016/j.cam.2019.112633 |
[13] | T. Abdeljawad, S. Banerjee, G. C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik, 218 (2020), 163698. https://doi.org/10.1016/j.ijleo.2019.163698 doi: 10.1016/j.ijleo.2019.163698 |
[14] | L. L. Huang, G. C. Wu, D. Baleanu, H. Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Sets. Syst., 404 (2021), 141–158. https://doi.org/10.1016/j.fss.2020.04.008 doi: 10.1016/j.fss.2020.04.008 |
[15] | P. O. Mohammed, H. M. Srivastava, J. L. G. Guirao, Y. S. Hamed, Existence of solutions for a class of nonlinear fractional difference equations of the Riemann-Liouville type, Adv. Contin. Discrete Models, 2022 (2022), 32. https://doi.org/10.1186/s13662-022-03705-9 doi: 10.1186/s13662-022-03705-9 |
[16] | F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. https://doi.org/10.1515/cmb-2019-0002 doi: 10.1515/cmb-2019-0002 |
[17] | P. O. Mohammed, H. M. Srivastava, S. A. Mahmood, K. Nonlaopon, K. M. Abualnaja, Y. S. Hamed, Positivity and monotonicity results for discrete fractional operators involving the exponential kernel, Math. Biosci. Eng., 5 (2022), 5120–5133. https://doi.org/10.3934/mbe.2022239 doi: 10.3934/mbe.2022239 |
[18] | R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F |
[19] | G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3 |
[20] | P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.7083 |
[21] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012). https://doi.org/10.1155/2012/406757 |
[22] | F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equations, 2 (2007), 165–176. https://ecommons.udayton.edu/mth_fac_pub/110 |
[23] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/406910 |
[24] | T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$–sums, Chaos, Solitons Fractals, 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022 |
[25] | P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303 |
[26] | T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 |
[27] | C. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. https://doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207 |
[28] | C. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. https://doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050 |
[29] | X. Liu, F. Du, D. Anderson, B. Jia, Monotonicity results for nabla fractional $h$-difference operators, Math. Methods Appl. Sci., 44 (2021), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823 |