Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types


  • In this article, we investigate some new positivity and negativity results for some families of discrete delta fractional difference operators. A basic result is an identity which will prove to be a useful tool for establishing the main results. Our first main result considers the positivity and negativity of the discrete delta fractional difference operator of the Riemann-Liouville type under two main conditions. Similar results are then obtained for the discrete delta fractional difference operator of the Liouville-Caputo type. Finally, we provide a specific example in which the chosen function becomes nonincreasing on a time set.

    Citation: Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu, Ehab E. Elattar, Y. S. Hamed. Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types[J]. Electronic Research Archive, 2022, 30(8): 3058-3070. doi: 10.3934/era.2022155

    Related Papers:

    [1] María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza . Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28(2): 567-587. doi: 10.3934/era.2020030
    [2] Noosheza Rani, Arran Fernandez . An operational calculus formulation of fractional calculus with general analytic kernels. Electronic Research Archive, 2022, 30(12): 4238-4255. doi: 10.3934/era.2022216
    [3] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [4] Mehmet Ali Özarslan, Ceren Ustaoğlu . Extended incomplete Riemann-Liouville fractional integral operators and related special functions. Electronic Research Archive, 2022, 30(5): 1723-1747. doi: 10.3934/era.2022087
    [5] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
    [6] Humberto Rafeiro, Joel E. Restrepo . Revisiting Taibleson's theorem. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029
    [7] Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
    [8] Mingfa Fei, Wenhao Li, Yulian Yi . Numerical analysis of a fourth-order linearized difference method for nonlinear time-space fractional Ginzburg-Landau equation. Electronic Research Archive, 2022, 30(10): 3635-3659. doi: 10.3934/era.2022186
    [9] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [10] Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour . Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order. Electronic Research Archive, 2024, 32(1): 134-159. doi: 10.3934/era.2024007
  • In this article, we investigate some new positivity and negativity results for some families of discrete delta fractional difference operators. A basic result is an identity which will prove to be a useful tool for establishing the main results. Our first main result considers the positivity and negativity of the discrete delta fractional difference operator of the Riemann-Liouville type under two main conditions. Similar results are then obtained for the discrete delta fractional difference operator of the Liouville-Caputo type. Finally, we provide a specific example in which the chosen function becomes nonincreasing on a time set.



    Discrete fractional operators (DFOs) provide a rich source of interaction between continuous and nonfractional-order operators (see, for example, [1,2]). In many scientific applications, DFOs are of key importance and they have achieved remarkable success in a number of domains including mathematical modeling [3,4], stability analysis [5,6], mathematical physics [7,8], and uncertainty theory [9,10]. In fact, there are many real-world applications of fractional difference equations and fractional discrete time systems, which are capable of addressing many problems that fractional differential equations cannot address. For example, we can mention such application areas as fractional chaotic maps for image encryption [11], variable-order recurrent neural networks [12], tempered fractional discrete systems [13], discrete fractional calculus for fuzzy and interval-valued functions [14], and so on. Many other domains of related studies, which are based upon discrete fractional calculus, can be found in [15,16,17,18,19,20] and also in the references cited therein.

    There have been many recent works concerned with the DFOs of the standard kernel such as the discrete Riemann-Liouville fractional operators. These DFOs were extended and examined by many researchers [1,21,22]. Similar to the present work, these discrete Riemann-Liouville fractional operators have gained a lot of attention because of their connections to other types of DFOs, such as the discrete Liouville-Caputo fractional operators (see, for example, [23,24]).

    The discrete fractional operators are useful in studying monotonicity and positivity of the nabla and delta analyses described in terms of discrete fractional sum or difference operators (see, for details, [25,26,27,28]).

    In an earlier influential work, Liu et al. [29] suggested that, if the discrete nabla fractional difference operator of the Riemann-Liouville type satisfies (RLa0αhf)(x)0 or (0) and the Liouville-Caputo type satisfies (Ca0αhf)(x)0 or (0), (Δhf)(x) could be nonpositive or nonnegative by analysing the nabla fractional differences.

    Based on the above-mentioned article by Liu et al. [29], the goal here is to analyse the discrete delta fractional difference operators of the Riemann-Liouville and Liouville-Caputo types for classes of discrete delta operators which induce (Δhf)(x). Our objective is twofold:

    ● Establish and analyse the positivity and negativity of (Δhf)(x) via the positivity and negativity of the corresponding discrete delta fractional differences in the sense of the Riemann-Liouville operators together with an initial condition.

    ● Establish and analyse the positivity and negativity of (Δhf)(x) via the positivity and negativity of the corresponding discrete delta fractional differences in the sense of the Liouville-Caputo operators combined with an initial condition.

    The outline of this study is as follows. First, in Section 2, we give a brief summary of the discrete delta fractional Riemann-Liouville and Liouville-Caputo type operators. In Section 3, we demonstrate our main theorems and corollaries concerning the positivity and negativity of the discrete delta fractional difference operators by using some conditions. Next, in Section 4, we consider a test example to illustrate the theory which we have presented in this paper. Finally, in our last Section 5, we include our conclusions and comments on further study.

    The related concepts regarding the discrete delta fractional sums and differences used in this study are recalled in this section.

    Definition 2.1 (see [23,24]). Let us denote the set {a0,a0+h,a0+2h,} by Na0,h with a starting point a0R. Assume that f is defined on Na0,h. Then the Δh Riemann-Liouville fractional sum of order α (>0) is expressed as follows:

    (a0Δαhf)(x)=hΓ(α)xhαr=a0h(x(r+1)h)[α1]hf(rh)forxinNa0+αh,h, (2.1)

    where x[α]h is defined by

    x[α]h=hαΓ(x+hh)Γ(x+hhα)forxandαinR, (2.2)

    and we use the convention that x[α]h=0 for x+hhα to not be a nonpositive integer and x+hh to be a nonpositive integer.

    Definition 2.2 (see [24]). Let f be defined on Na0,h. Then the Δh difference operator is given by

    (Δhf)(x)=1h{f(x+h)f(x)}forxinNa0,h.

    Moreover, the Δh Riemann-Liouville fractional difference of order α (0α<1) is defined by

    (RLa0Δαhf)(x)=(Δha0Δ(1α)hf)(x)=hΓ(1α)Δh[xh+α1r=a0h(x(r+1)h)[α]hf(rh)]forxinNa0+(1α)h,h.

    An equivalent definition to Definition 2.2 is stated in the following theorem.

    Theorem 2.1 (see [25]). The Δh Riemann-Liouville fractional differences of order α (0<α<1) can be expressed as follows:

    (RLa0Δαhf)(x)=hΓ(α)xh+αr=a0h(x(r+1)h)[α1]hf(rh)forxinNa0αh,h. (2.3)

    Definition 2.3 (see [24]). For a function f defined on Na0,h, the Δh Liouville-Caputo type fractional difference of order α (0α<1) is defined by

    (Ca0Δαhf)(x)=(a0Δ(1α)hΔhf)(x)=hΓ(1α)xh+α1r=a0h(x(r+1)h)[α]h(Δhf)(rh)forxinNa0+(1α)h,h.

    Lemma 2.1 (see [25,Lemma 1]). For positive values of α and h, the followingresult holds true:

    Δh(x[α]h)=αx[α1]h,

    for each x in N0,h.

    The following proposition gives the relationship between the Δh Riemann-Liouville and Liouville-Caputo fractional differences.

    Proposition 2.1 (see [25,Proposition 1]). For α(0,1), we have

    (Ca0Δαhf)(x)=(RLa0Δαhf)(x)1Γ(1α)(xa0)[α]hf(a), (2.4)

    for x in Na0+(1α)h,h.

    Lemma 2.2 (see [1,Theorem 2.40]). Let α(0,1), h>0 and μ>1. Then

    RLa0+μhΔαh(xa0)[μ]h=Γ(μ+1)Γ(μ+1α)(xa0)[μα]h, (2.5)

    for xNa0+(μ+1α)h,h.

    Let's start our main results on the Riemann-Liouville and Liouville-Caputo differences. Moreover, the following identity is the main lemma to start off our work here.

    Lemma 3.1. Let α(0,1) and h>0. Then

    1Γ(α)ȷ=0(ȷhαhh)[α1]hΓ(α+)Γ(α)Γ(+1)=hα1Γ(α+ȷ+1)Γ(α)Γ(ȷ+2),

    for ȷN0.

    Proof. According to Lemma 2.2, we have

    (RLa0+αhΔαh(xha0)[α1]hΓ(α))(x)=(RLa0+h+(α1)hΔαh(x(a0+h))[α1]hΓ(α))(x)=1Γ(0)(xha0)[1]h=0,

    for xNa0+h,h. Considering Theorem 2.1, it follows that

    (RLa0+αhΔαh(xha0)[α1]hΓ(α))(x)=hΓ(α)xh+αr=a0h+α(x(r+1)h)[α1]h(rhha0)[α1]hΓ(α)=hαΓ(α)xh+αr=a0h+α(x(r+1)h)[α1]hΓ(ra0h)Γ(α)Γ(ra0hα+1)=0.

    At x=a0+(ȷ+1)h, we get

    0=hαΓ(α)a0h+α+ȷ+1r=a0h+α(a0+ȷhrh)[α1]hΓ(ra0h)Γ(α)Γ(ra0hα+1)=hαΓ(α)ȷ+1=0(ȷhαhh)[α1]hΓ(α+)Γ(α)Γ(+1)=h1Γ(α+ȷ+1)Γ(α)Γ(ȷ+2)+hαΓ(α)ȷ=0(ȷhαhh)[α1]hΓ(α+)Γ(α)Γ(+1),

    which rearranges to the required result.

    Theorem 3.1. Suppose that f:Na0+αh,hR satisfiesthe following conditions:

    (i)(RLa0+αhΔαhf)(x)0foreachxNa0+h,h,(ii)f(a0+(α+)h)Γ(α++1)Γ(α)Γ(+2)f(a0+αh)forN0,

    for α(0,1]. Then (Δhf)(x)0 for xNa0+αh,h.

    Proof. The case when α=1 it is straightforward. For 0<α<1, we firstly try to show that f(a0+(α+)h)Γ(α+)Γ(α)Γ(+1)f(a0+αh) by strong induction process for N0. From the assumption and Theorem 2.1 (Eq (2.3)) at x=a0+h, we have for 0<α<1:

    (RLa0Δαhf)(a0+h)=hΓ(α)a0h+α+1r=a0h+α(a0+h(r+1)h)[α1]hf(rh)=hα{αf(a0+αh)+f(a0+αh+h)}0,

    which implies that

    f(a0+αh+h)αf(a0+αh).

    On the other hand, by using condition (ii) at =0, we have

    f(a0+αh)αf(a0+αh).

    Thus,

    (Δhf)(x)|x=a0+αh=f(a0+(α+1)h)f(a0+αh)h1h[αf(a0+αh)αf(a0+αh)]=0.

    By using Eq (2.3) at x=a0+2h and the assumption, we have for 0<α<1:

    (RLa0Δαhf)(a0+2h)=hΓ(α)a0h+α+2r=a0h+α(a0+2h(r+1)h)[α1]hf(rh)=hα{(1α)(α)2f(a0+αh)+(α)f(a0+αh+h)+f(a0+αh+2h)}0,

    which leads to

    f(a0+αh+2h)Γ(α+2)Γ(α)Γ(3)f(a0+αh).

    On the other hand, considering condition (ii) at =1 to get

    f(a0+(α+1)h)Γ(α+2)Γ(α)Γ(3)f(a0+αh). (3.1)

    Therefore,

    (Δhf)(x)|x=a0+(α+1)h=f(a0+(α+2)h)f(a0+(α+1)h)h1h[Γ(α+2)Γ(α)Γ(3)f(a0+αh)f(a0+(α+1)h)]byEq.(3.1)0.

    Now, we suppose that

    f(a0+(α+)h)Γ(α+)Γ(α)Γ(+1)f(a0+αh), (3.2)

    for =0,1,,ȷ and some ȷN0. Then, we will try to show that the rule is true at =ȷ+1. By using Eq (2.3) at x=a0+(ȷ+1)h and the assumption, we have:

    (RLa0Δαhf)(a0+2h)=hΓ(α)a0h+α+ȷ+1r=a0h+α(a0+ȷhrh)[α1]hf(rh)=hαf(a0+(α+ȷ+1)h)+hΓ(α)a0h+α+ȷr=a0h+α(a0+ȷhrh)[α1]hf(rh)=hαf(a0+(α+ȷ+1)h)+hΓ(α)ȷ=0(ȷhαhh)[α1]hf(a0+(α+)h)0,

    which is equivalent to

    f(a0+(α+ȷ+1)h)hα+1Γ(α)ȷ=0(ȷhαhh)[α1]hf(a0+(α+)h)by(3.2)f(a0+αh)hα+1Γ(α)ȷ=0(ȷhαhh)[α1]hΓ(α+)Γ(α)Γ(+1)by=Lemma3.1Γ(α+ȷ+1)Γ(α)Γ(ȷ+2)f(a0+αh),

    which gives that f(a0+(α+ȷ+1)h)Γ(α+ȷ+1)Γ(α)Γ(ȷ+2)f(a0+αh). Thus, by using this together with the Condition (ii), we have

    (Δhf)(x)|x=a0+(α+ȷ)h=f(a0+(α+ȷ+1)h)f(a0+(α+ȷ)h)h1h[Γ(α+ȷ+1)Γ(α)Γ(ȷ+2)f(a0+αh)f(a0+(α+ȷ)h)]0,

    for ȷN0. Consequently, we have (Δhf)(x)0 for all xNa0+αh,h.

    Corollary 3.1. If the function f:Na0+αh,hR satisfiesthe following conditions:

    (i)(RLa0+αhΔαhf)(x)0foreachxNa0+h,h,(ii)f(a0+(α+)h)Γ(α++1)Γ(α)Γ(+2)f(a0+αh)forN0,

    for α(0,1], then (Δhf)(x)0 for xNa0+αh,h.

    Proof. Define g:=f. Thus, the proof follows immediately from Theorem 3.1 by applying it for the function g.

    Theorem 3.2. Suppose that f:Na0+αh,hR satisfiesthe following conditions:

    (i)(Ca0+αhΔαhf)(x)0foreachxNa0+2h,h,(ii)(1α)f(a0+(α+)h)hαΓ(1α)((+1)hαh)[α]hf(a0+αh)hα+1Γ(α)1r=0(hrhαh)[α1]hf(a0+(α+r)h)forN0,

    for α(0,1]. Then (Δhf)(x)0 for xNa0+(α+1)h,h.

    Proof. The result is clear for α=1. Let α(0,1). Then, according to Proposition 2.1, Theorem 2.1 and the assumption, one can have

    (Ca0+αhΔαhf)(x)=(RLa0+αhΔαhf)(x)1Γ(1α)(xaαh)[α]hf(a0+αh)=hΓ(α)xh+αr=a0h+α(x(r+1)h)[α1]hf(rh)1Γ(1α)(xaαh)[α]hf(a0+αh)0. (3.3)

    For x=a0+2h, it follows that

    (Ca0+αhΔαhf)(a0+2h)=hΓ(α)a0h+α+2r=a0h+α(a0+hrh)[α1]hf(rh)1Γ(1α)(2hαh)[α]hf(a0+αh)=hα{(1α)(α)2f(a0+αh)+(α)f(a0+αh+h)+f(a0+αh+2h)}hα(2α)(1α)2f(a0+αh)0,

    which leads to

    f(a0+(α+2)h)(1α)f(a0+αh)+αf(a0+(α+1)h). (3.4)

    On the other hand, by considering condition (ii) at =0, we have

    f(a0+αh+h)f(a0+αh). (3.5)

    Therefore, both inequalities (3.4) and (3.5) imply that

    (Δhf)(x)|x=a0+(α+1)h=f(a0+(α+2)h)f(a0+(α+1)h)h1h[(1α)f(a0+αh)+αf(a0+αh+h)f(a0+(α+1)h)](1α)h[f(a0+αh)f(a0+αh+h)0.

    By substituting x=a0+(ȷ+1)h int (3.3), we obtain

    (Ca0+αhΔαhf)(a0+(ȷ+1)h)=hΓ(α)a0h+α+ȷ+1r=a0h+α(a0+ȷhrh)[α1]hf(rh)1Γ(1α)((ȷ+1)hαh)[α]hf(a0+αh)=hΓ(α)ȷ+1=0(ȷhαhh)[α1]hf(a0+(α+ȷ)h)1Γ(1α)((ȷ+1)hαh)[α]hf(a0+αh)=hαf(a0+(α+ȷ+1)h)+hΓ(α)ȷ=0(ȷhαhh)[α1]hf(a0+(α+ȷ)h)1Γ(1α)((ȷ+1)hαh)[α]hf(a0+αh)0,

    which implies that

    (a0+(α+ȷ+1)h)hαΓ(1α)((ȷ+1)hαh)[α]hf(a0+αh)hα+1Γ(α)ȷ=0(ȷhαhh)[α1]hf(a0+(α+ȷ)h)
    hαΓ(1α)((ȷ+1)hαh)[α]hf(a0+αh)+αf(a0+(α+ȷ)h)hα+1Γ(α)ȷ1=0(ȷhαhh)[α1]hf(a0+(α+ȷ)h). (3.6)

    Hence, by using inequality (3.6) combined with the condition (ii), we have

    (Δhf)(x)|x=a0+(α+ȷ)h=f(a0+(α+ȷ+1)h)f(a0+(α+ȷ)h)h1h[hαΓ(1α)((ȷ+1)hαh)[α]hf(a0+αh)(1α)f(a0+(α+ȷ)h)hα+1Γ(α)ȷ1=0(ȷhαhh)[α1]hf(a0+(α+ȷ)h)]bycondition(ii)0,

    for ȷN0. Thus, we get (Δhf)(x)0 for all xNa0+(α+1)h,h.

    Corollary 3.2. If the function f:Na0+αh,hR satisfiesthe following conditions:

    (i)(Ca0+αhΔαhf)(x)0foreachxNa0+2h,h,(ii)(1α)f(a0+(α+)h)hαΓ(1α)((+1)hαh)[α]hf(a0+αh)hα+1Γ(α)1r=0(hrhαh)[α1]hf(a0+(α+r)h)forN0,

    for α(0,1], then (Δhf)(x)0 for xNa0+(α+1)h,h.

    Proof. First, we define define g:=f. Therefore, the proof follows immediately from Theorem 3.2 applying for the new defined function g.

    This section provides a specific example to illustrate our previous theoretical results.

    Consider the function

    f(x)=(25)xforxNa0+αh,h.

    At first, we will try to show that (RLa0+αhΔαhf)(x)0 for x{a0+h,a0+2h}, α=12,a0=0 and h=1. From Definition (2.3) at x=a0+h, we have

    (RLa0Δαhf)(a0+h)=hΓ(α)a0h+α+1r=a0h+α(a0+h(r+1)h)[α1]hf(rh)=hα{αf(a0+αh)+f(a0+αh+h)}=12(25)12+(25)32=28144430,

    which leads to

    f(a0+(α+1)h)αf(a0+αh). (4.1)

    Moreover, Definition (2.3) at x=a0+2h gives

    (RLa0Δαhf)(a0+2h)=hΓ(α)a0h+α+2r=a0h+α(a0+2h(r+1)h)[α1]hf(rh)=hα{(1α)(α)2f(a0+αh)+(α)f(a0+αh+h)+f(a0+αh+2h)}=18(25)1212(25)32+(25)52=49647530,

    which implies that

    f(a0+(α+2)h)Γ(α+2)Γ(α)Γ(3)f(a0+αh)=α(α+1)2f(a0+αh). (4.2)

    On the other hand, we will test the condition:

    f(a0+(α+)h)Γ(α++1)Γ(α)Γ(+2)f(a0+αh),

    at =0,1. At =0, it follows that

    (25)12=f(a0+αh)12(25)12=αf(a0+αh),

    which means that

    f(a0+αh)αf(a0+αh). (4.3)

    Moreover, at =1, it follows that

    5092012=(25)32=f(a0+(α+1)h)Γ(α+2)Γ(α)Γ(3)f(a0+αh)=38(25)12=171721,

    which is equivalent to

    f(a0+(α+1)h)α(α+1)2f(a0+αh). (4.4)

    Thus, inequalities (4.1)–(4.4) conclude that

    f(a0+(α+2)h)α(α+1)2f(a0+αh)f(a0+(α+1)h)αf(a0+αh)f(a0+αh).

    These inequalities imply that f is nonincreasing on the time set {a0+αh,a0+(α+1)h}.

    In this article, new positivity and negativity results for the discrete delta fractional difference operators of the Riemann-Liouville and Liouville-Caputo types have been established on Na0+αh,h. These results can be summarized as follows:

    ● An identity has been obtained in Lemma 3.1, which has been used in establishing the main results.

    (Δhf)(x)0 (or 0) for xNa0+αh,h under the conditions given by (RLa0+αhΔαhf)(x)0 (or 0) for each xNa0+h,h and f(a0+(α+)h)0(or0)Γ(α++1)Γ(α)Γ(+2)f(a0+αh) for N0 and α(0,1] in Theorem 3.1 and Corollary 3.1.

    (Δhf)(x)0 (or 0) for xNa0+(α+1)h,h under the following conditions: (Ca0+αhΔαhf)(x)0 (or 0) for each xNa0+2h,h and (1α)f(a0+(α+)h)0 (or0)hαΓ(1α) ((+1)hαh)[α]hf(a0+αh)hα+1Γ(α) 1r=0(hrhαh)[α1]hf(a0+(α+r)h) for N0 and α(0,1] in Theorem 3.2 and Corollary 3.2.

    Finally, we have dedicated the last section to show that a function is nonincreasing under the above conditions on the time set {a0+αh,a0+(α+1)h}.

    This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/86), Taif University, Taif, Saudi Arabia.

    The authors declare there is no conflicts of interest.



    [1] C. Goodrich, A. Peterson, Discrete Fractional Calculus, Springer, Berlin, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [2] F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. https://doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
    [3] F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fract. Equations, 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [4] F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [5] C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [6] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Am. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [7] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [8] A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
    [9] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ., Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [10] Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Comput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
    [11] R. W. Ibrahim, H. Natiq, A. Alkhayyat, A. K. Farhan, N. M. G. Al-Saidi, D. Baleanu, Image encryption algorithm based on new fractional beta chaotic maps, Comput. Model. Eng. Sci., 132 (2022). https://doi.org/10.32604/cmes.2022.018343
    [12] L. L. Huang, J. H. Park, G. C. Wu, Z. W. Mo, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appl. Math., 370 (2020), 112633. https://doi.org/10.1016/j.cam.2019.112633 doi: 10.1016/j.cam.2019.112633
    [13] T. Abdeljawad, S. Banerjee, G. C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik, 218 (2020), 163698. https://doi.org/10.1016/j.ijleo.2019.163698 doi: 10.1016/j.ijleo.2019.163698
    [14] L. L. Huang, G. C. Wu, D. Baleanu, H. Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Sets. Syst., 404 (2021), 141–158. https://doi.org/10.1016/j.fss.2020.04.008 doi: 10.1016/j.fss.2020.04.008
    [15] P. O. Mohammed, H. M. Srivastava, J. L. G. Guirao, Y. S. Hamed, Existence of solutions for a class of nonlinear fractional difference equations of the Riemann-Liouville type, Adv. Contin. Discrete Models, 2022 (2022), 32. https://doi.org/10.1186/s13662-022-03705-9 doi: 10.1186/s13662-022-03705-9
    [16] F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. https://doi.org/10.1515/cmb-2019-0002 doi: 10.1515/cmb-2019-0002
    [17] P. O. Mohammed, H. M. Srivastava, S. A. Mahmood, K. Nonlaopon, K. M. Abualnaja, Y. S. Hamed, Positivity and monotonicity results for discrete fractional operators involving the exponential kernel, Math. Biosci. Eng., 5 (2022), 5120–5133. https://doi.org/10.3934/mbe.2022239 doi: 10.3934/mbe.2022239
    [18] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
    [19] G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [20] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.7083
    [21] T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012). https://doi.org/10.1155/2012/406757
    [22] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equations, 2 (2007), 165–176. https://ecommons.udayton.edu/mth_fac_pub/110
    [23] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/406910
    [24] T. Abdeljawad, Different type kernel h-fractional differences and their fractional h–sums, Chaos, Solitons Fractals, 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [25] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [26] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006
    [27] C. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. https://doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [28] C. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. https://doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [29] X. Liu, F. Du, D. Anderson, B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Methods Appl. Sci., 44 (2021), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
  • This article has been cited by:

    1. Pshtiwan Othman Mohammed, Dumitru Baleanu, Thabet Abdeljawad, Eman Al-Sarairah, Y. S. Hamed, Monotonicity and extremality analysis of difference operators in Riemann-Liouville family, 2022, 8, 2473-6988, 5303, 10.3934/math.2023266
    2. Pshtiwan Othman Mohammed, Christopher S. Goodrich, Hari Mohan Srivastava, Eman Al-Sarairah, Y. S. Hamed, A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville–Caputo Family, 2023, 12, 2075-1680, 114, 10.3390/axioms12020114
    3. Juan L. G. Guirao, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu, Marwan S. Abualrub, Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results, 2022, 7, 2473-6988, 18127, 10.3934/math.2022997
    4. Dumitru Baleanu, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Thabet Abdeljawad, Y. S. Hamed, On convexity analysis for discrete delta Riemann–Liouville fractional differences analytically and numerically, 2023, 2023, 1029-242X, 10.1186/s13660-023-02916-2
    5. PSHTIWAN OTHMAN MOHAMMED, CARLOS LIZAMA, EMAN AL-SARAIRAH, JUAN L. G. GUIRAO, NEJMEDDINE CHORFI, MIGUEL VIVAS-CORTEZ, ANALYSIS SEQUENTIAL FRACTIONAL DIFFERENCES AND RELATED MONOTONICITY RESULTS, 2024, 32, 0218-348X, 10.1142/S0218348X24400371
    6. Pshtiwan Othman Mohammed, Some positive results for exponential-kernel difference operators of Riemann-Liouville type, 2024, 4, 2767-8946, 133, 10.3934/mmc.2024012
    7. PSHTIWAN OTHMAN MOHAMMED, DUMITRU BALEANU, EMAN AL-SARAIRAH, THABET ABDELJAWAD, NEJMEDDINE CHORFI, THEORETICAL AND NUMERICAL COMPUTATIONS OF CONVEXITY ANALYSIS FOR FRACTIONAL DIFFERENCES USING LOWER BOUNDEDNESS, 2023, 31, 0218-348X, 10.1142/S0218348X23401837
    8. Wei Ma, Yongsheng Qian, Junwei Zeng, Shufan Lei, Xuting Wei, Futao Zhang, The impact of traffic accidents on traffic capacity in weaving area of highway under the intelligent connected vehicle environment, 2025, 55, 0924-669X, 10.1007/s10489-024-06097-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1887) PDF downloads(156) Cited by(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog