Research article Special Issues

Reconstruction of initial heat distribution via Green function method

  • Received: 25 November 2021 Revised: 18 April 2022 Accepted: 19 April 2022 Published: 08 June 2022
  • In this paper, layer potential techniques are investigated for solving the thermal diffusion problem. We construct the Green function to get the analytic solution. Moreover, by combining Fourier transform some attractive relation between initial heat distribution and the final observation is obtained. Finally iteration scheme is developed to solve the inverse heat conduction problem and convergence results are presented.

    Citation: Xiaoping Fang, Youjun Deng, Zaiyun Zhang. Reconstruction of initial heat distribution via Green function method[J]. Electronic Research Archive, 2022, 30(8): 3071-3086. doi: 10.3934/era.2022156

    Related Papers:

  • In this paper, layer potential techniques are investigated for solving the thermal diffusion problem. We construct the Green function to get the analytic solution. Moreover, by combining Fourier transform some attractive relation between initial heat distribution and the final observation is obtained. Finally iteration scheme is developed to solve the inverse heat conduction problem and convergence results are presented.



    加载中


    [1] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
    [2] R. H. S. Winterton, Heat transfer, Oxford University Press, Oxford, 1997.
    [3] I. Bushuyev, Global uniqueness for inverse parabolic problems with final observation, Inverse Probl., 11 (1995), L11–L16. https://doi.org/10.1088/0266-5611/11/4/001 doi: 10.1088/0266-5611/11/4/001
    [4] A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach, J. Math. Anal. Appl., 330 (2007), 766–779. https://doi.org/10.1016/j.jmaa.2006.08.018 doi: 10.1016/j.jmaa.2006.08.018
    [5] Y. C. Hon, T. Wei, A Meshless Computational Method for Solving Inverse Heat Conduction Problem, Int. Ser. Adv. Bound. Elem., 13 (2002), 135–144.
    [6] Y. C. Hon, T. Wei, A fundamental solution method for inverse heat conduction problem, Eng. Anal. Bound. Elem., 28 (2004), 489–495. https://doi.org/10.1016/S0955-7997(03)00102-4 doi: 10.1016/S0955-7997(03)00102-4
    [7] Y. C. Hon, T. Wei, The method of fundamental solutions for solving multidimensional inverse heat conduction problems, Comput. Model. Eng. Sci., 7 (2005), 119–132.
    [8] V. Isakov, Inverse parabolic problems with the final overdetermination, Comun. Pure Appl. Math., 44 (1991), 185–209. https://doi.org/10.1002/cpa.3160440203 doi: 10.1002/cpa.3160440203
    [9] G. Nakamura, S. Saitoh, A. Syarif, Representations of initial heat distributions by means of their heat distributions as functions of time, Inverse Probl., 5 (1999), 1255–1261. https://doi.org/10.1088/0266-5611/15/5/310 doi: 10.1088/0266-5611/15/5/310
    [10] A. Shidfara, G. R. Karamalib, J. Damirchia, An inverse heat conduction problem with a nonlinear source term, Nonlinear Anal. Theory Methods Appl., 65 (2006), 615–621. https://doi.org/10.1016/j.na.2005.09.030 doi: 10.1016/j.na.2005.09.030
    [11] M. Yamamoto, J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Probl., 17 (2001), 1181–1202. https://doi.org/10.1088/0266-5611/17/4/340 doi: 10.1088/0266-5611/17/4/340
    [12] L. Ling, M. Yamamoto, Y. C. Hon, T. Takeuchi, Identification of source locations in two-dimensional heat equations, Inverse Probl., 22 (2006), 1289–1305. https://doi.org/10.1088/0266-5611/22/4/011 doi: 10.1088/0266-5611/22/4/011
    [13] Y. Deng, Z. Liu, Iteration methods on sideways parabolic equations, Inverse Probl., 25 (2009), 095004. https://doi.org/10.1088/0266-5611/25/9/095004 doi: 10.1088/0266-5611/25/9/095004
    [14] Y. Deng, Z. Liu, New fast iteration for determining surface temperature and heat flux of general sideways parabolic equation, Nonlinear Anal. Real World Appl., 12 (2011), 156–166. https://doi.org/10.1016/j.nonrwa.2010.06.005 doi: 10.1016/j.nonrwa.2010.06.005
    [15] C. L. Fu, Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation, J. Comput. Appl. Math., 167 (2004), 449–463. https://doi.org/10.1016/j.cam.2003.10.011 doi: 10.1016/j.cam.2003.10.011
    [16] D. N. H$\acute{a}$o, H-J. Reinhardt, On a sideways parabolic equation, Inverse Probl., 13 (1997), 297–309. https://doi.org/10.1088/0266-5611/13/2/007 doi: 10.1088/0266-5611/13/2/007
    [17] D. N. H$\acute{a}$o, H-J. Reinhardt, A. Schneider, Numerical solution to a sideways parabolic equation, Int. J. Numer. Methods Eng., 50 (2001), 1253–1267. https://doi.org/10.1002/1097-0207(20010220)50:5<1253::AID-NME81>3.0.CO;2-6 doi: 10.1002/1097-0207(20010220)50:5<1253::AID-NME81>3.0.CO;2-6
    [18] H. Lobo, C. Cohen, Measurement of thermal conductivity of polymer melts by the line-source method, Polymer Engng. Sci., 30 (1990), 65–70. https://doi.org/10.1002/pen.760300202 doi: 10.1002/pen.760300202
    [19] R. Kato, A. Maesono, I. Hatta, Thermal diffusivity measurement af a thin film in the direction across the film by AC calorimetric method, Japan. J. Appl. Phys., 32 (1993), 6353–6355. https://doi.org/10.1143/JJAP.32.3653 doi: 10.1143/JJAP.32.3653
    [20] C. H. Huang, M. N. $\ddot{ O }$zisik, A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity, Numer. Heat Transfer A, 20 (1991), 95–1l0. https://doi.org/10.1080/10407789108944811 doi: 10.1080/10407789108944811
    [21] H. Ammari, H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, Springer-Verlag, New York, 2007.
    [22] H. Ammari, Y. Deng, H. Kang, H. Lee, Reconstruction of Inhomogeneous Conductivities via the concept of Generalized Polarization Tensors, Ann. I. H. Poincare-AN, 31 (2014), 877–897. https://doi.org/10.1016/j.anihpc.2013.07.008 doi: 10.1016/j.anihpc.2013.07.008
    [23] H. Ammari, Y. Deng, P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal., 220 (2016), 109–153. https://doi.org/10.1007/s00205-015-0928-0 doi: 10.1007/s00205-015-0928-0
    [24] Y. Deng, H. Li, H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system, SIAM J. Math. Anal., 52 (2020), 1786–1805. https://doi.org/10.1137/18M1181067 doi: 10.1137/18M1181067
    [25] Y. Deng, J. Li, H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153–187. https://doi.org/10.1007/s00205-018-1276-7 doi: 10.1007/s00205-018-1276-7
    [26] Y. Deng, J. Li, H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691–721. https://doi.org/10.1007/s00205-019-01429-x doi: 10.1007/s00205-019-01429-x
    [27] Y. Deng, H. Liu, X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differ. Equ., 267 (2019), 2192–2209. https://doi.org/10.1016/j.jde.2019.03.009 doi: 10.1016/j.jde.2019.03.009
    [28] Y. Deng, H. Liu, G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differ. Equ., 267 (2019), 2471–2502. https://doi.org/10.1016/j.jde.2019.03.019 doi: 10.1016/j.jde.2019.03.019
    [29] Y. Deng, H. Liu, X. Wang, W. Wu, Geometrical and topological properties of transmission resonance and artificial mirage, SIAM J. Appl. Math., 82 (2022), 1–24. https://doi.org/10.1137/21M1413547 doi: 10.1137/21M1413547
    [30] C. A. Brebbia, W. L. Wendland, G. Kuhn, Boundary elements IX.: Fluid flow and potential applications, vol.3, Computational Mechanics, Stuttgart, 1987,213–229.
    [31] L. Evans, Partial Differential Equations, Providence: American Mathematical Society, 1998.
    [32] A.Friedman, Partial diffrential equations of parabolic type, Prentice-Hall, Englewood-Cliff, NJ, 1964.
    [33] A.K. Louis, Inverse und schlecht gestellte Probleme. Stuttgart, Teubner, 1989.
    [34] V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., 7 (1966), 414–417.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1323) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog