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Abstract: In this paper, layer potential techniques are investigated for solving the thermal diffusion
problem. We construct the Green function to get the analytic solution. Moreover, by combining Fourier
transform some attractive relation between initial heat distribution and the final observation is obtained.
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1. Introduction

The thermal diffusion problem has long been studied. Applications can be found in various phys-
ical and engineering settings, in particular in hydrology [1], material sciences, heat transfer [2] and
transport problems, etc. The inverse problems for determination of initial temperature, thermal con-
ductivity or heat source from final over determination or other additional measurements have been
widely considered by lots of researchers (see, e.g., [3–11]). In [11], the authors explored the Tikhonov
regularization for simultaneous reconstruction of the initial temperature and heat radiative coefficient in
a heat conductive system. They used the final observation and temperature in a small region as the ad-
ditional data. In [9], an exact and analytical representation of the initial heat distribution was given by
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using only the measurements of temperature and heat flux at one point. In [12], the authors proved the
uniqueness of the identification of unknown source locations in two-dimensional heat equations from
scattered measurements and presented some numerical methods to identify the locations. Hon and Wei
introduced the fundamental solution methods in solving inverse heat conduction problems [6,7]. In re-
cent years a special kind of inverse heat conduction problem called sideways parabolic equations have
also been widely studied [13–17]. Various regularization methods are presented to solve the severely
ill-posed problem and optimal convergence results are obtained in different stopping rules.

Reconstruction of thermophysical properties such as thermal conductivity and heat capacity is an-
other interesting and meaningful research area. Many theoretical and experimental methods have been
developed in the literature, they include, among others, the steady-state method, the probe method [18],
the periodic heating method [19], the least-squares method [20] and the pulse heating method. For a
steady case, the layer potential technique is widely used for analysis of the solution and reconstruction
of the thermal conductivity [21, 22]. In [21], the authors construct the Generalized Polarization Ten-
sors based on layer potential method in reconstruction of the shape of the homogeneous conductive
body. Besides, layer potential techniques are widely used in wave prorogation problems, including
Helmholtz problems, Maxwell problems, Elastic problems and so on (see [23–29] and there references
there in).

In this paper, we shall consider the reconstruction of the initial heat distribution from final obser-
vation in the upper half plane. The Dirichlet boundary condition is given. We firstly use the layer
potential method to represent the solution of the forward heat conduction problem in an integral form.
Then by exploring the Green function, the Dirichlet boundary problem can be solved analytically with-
out knowing the Neumann boundary condition. By using appropriate extension and Fourier transform,
we derive a very simple relation between the initial heat distribution and the final observation. The
severely ill-posed problem for reconstruction of initial temperature then is done by introducing a new
iteration scheme. Convergence results are investigated under both the a priori and a posteriori stopping
rules. The main contribution of this paper is to extend the layer potential techniques to the inverse heat
diffusion problem and designing of a new iterative scheme in solving the related inverse heat distribu-
tion problem, theoretically. We shall consider the numerical implementation in a forthcoming work.

The organization of this paper is as follows. In the second section, we shall introduce the layer
potential techniques together with Green’s function in representing the integral solution to the heat
diffusion problem, while proofs of the main theorems can be found in Appendix A. In Section 3, the
attractive relation between initial heat distribution and the final observation shall be derived by making
use of the properties of layer potentials. Base on the relation, a new iterative methods is designed in
solving the inverse heat distribution problem. We then analyze some properties of the Fourier transform
and derived the convergence results by using the aforementioned iterative methods, in Section 4 and 5,
respectively. Some conclusions are made in Section 6.

2. Representation of solution

We shall first consider the forward heat conduction problem in the half plane
ut = k∆u (x, t) ∈ R × R+ × (0,T ),
u(x, 0) = µ0(x) x ∈ R × R+,
u(x1, 0, t) = f (x1, t) (x1, t) ∈ R × (0,T )

(2.1)
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where R+ := (0,+∞) and x := (x1, x2). The thermal diffusion coefficient k is supposed to be a positive
constant. The initial temperature and boundary temperature are given and denoted by µ0(x1, x2) and
f (x1, t), respectively. In this paper, we suppose that µ0(x) ∈ L2(R × R+) and f (x, t) ∈ L2(R × (0,T )).

We shall consider the analytic solution to the forward problem (2.1) by using the Green function
method. Let Γ(x, t) be the fundamental solution to the heat equation, i.e.,

Γk(x, t) =
1

4πkt
e−
|x|2
4kt (2.2)

which satisfies {
(Γk)t = k∆Γk (x, t) ∈ R2 × R+
Γk(x, 0) = δ0 x ∈ R2

where δ0 is the Dirac function at the origin [31]. To derive the solution to (2.1), we firstly introduce the
two well known quantities, single layer potential and double layer potential for heat equation. They are
extensions of the classical layer potentials in electrostatic problem [32]. For a domain D, we denote by
Sk

D (if k = 1 then we simply denote by SD) the single layer potential

Sk
D[φ](x, t) :=

∫ t

0

∫
∂D
Γk(x − y, t − s)φ(y, s)dσyds, x ∈ R2 \ ∂D (2.3)

for a density function φ(x, t) ∈ H−1/2,1(∂D,R+) and denote by Dk
D (if k = 1 then denote by DD) the

double layer potential

Dk
D[ψ](x, t) :=

∫ t

0

∫
∂D

∂

∂νy
Γk(x − y, t − s)ψ(y, s)dσyds, x ∈ R2 \ ∂D (2.4)

for a density funtion ψ(x, t) ∈ H1/2,1(∂D,R+). We shall further define a volume potential by

Vk
D[µ](x, t) :=

∫
D
Γk(x − y, t)µ(y)dy, x ∈ R2 (2.5)

for a function µ(x) ∈ L2(D). Here y = (y1, y2). By using Green’s formula, the solution to (2.1) can
be written in the form of layer potentials. We state the result in the following theorem, for the sake of
convenience to the reader, where proofs can be found in the appendix.

Theorem 2.1. The solution to the heat conduction problem
ut = k∆u (x, t) ∈ D × (0,T ),
u(x, 0) = µ0(x) x ∈ D,
u(x, t) = f (x, t) (x, t) ∈ ∂D × (0,T )

has the following form

u(x, t) = Vk
D[µ0](x, t) + Sk

D[k∂u/∂ν](x, t) − kDk
D[ f ](x, t). (2.6)

We see from the solution form (2.6) that it contains both Dirichlet and Neumann boundary condi-
tions. Thus, in order to get the solution of (2.1) by using the integral form (2.6), additional Neumann
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boundary condition is required. In this paper, we shall not use the Neumann boundary measurement
thus we need to avoid the appearance of it in the solution form.

If for a bounded smooth domain D, we can introduce the jump formula for layer potentials. For the
single layer potential we have on ∂D

∂

∂ν
SD[φ]

∣∣∣∣
±
(x, t) = ∓

1
2
φ(x, t) +K ∗D[φ](x, t), (2.7)

where the ± signs mean the limits are taken from outside the domain D and inside the domain D,
respectively. The integral operator K ∗D is the adjoint operator of KD, which is defined by

KD[ψ](x, t) = p.v.
∫ t

0

∫
∂D

∂

∂νy
Γ(x − y, t − s)ψ(y, s)dσyds, (2.8)

where p.v. means the Cauchy principle value of the integral. For the jump formula of double layer
potential we have

DD[ψ]
∣∣∣∣
±
(x, t) = ±

1
2
ψ(x, t) +KD[ψ](x, t). (2.9)

By taking the trace of the solution u(x, t) and using the jump formulas there holds

SD[g](x, t) = Vk
D[µ0](x, t) − (

I
2
+KD)[ f (·, s/k)](x, kt)

for x ∈ ∂D, where g := k∂u/∂ν. The above integral equation can be used to solve the Neumann
boundary condition g. The equation is a Volterra integral equation of the first kind with kernel Γk(x, t)
and uniqueness of solution has been proved in [30].

However, for a unbounded domain D the jump formula for the layer potentials may fail. Besides,
it is also not easy and stable to solve the Volterra integral equation of the first kind. In what follows,
we seek for the Green function to solve (2.1) without getting involved with the Neumann boundary
condition. Denote by G(x, t) the Green function which satisfies

Gt = ∆G (x, t) ∈ D × R+
G(x, 0) = δ0 x ∈ D
G(x, t) = 0. (x, t) ∈ ∂D × R+.

(2.10)

With the help of Green’s function, solution to heat equation can be written by integral formulation.

Theorem 2.2. Let x ∈ D = R × R+ then the solution u(x, t) to (2.1) has the form

u(x, t) =
∫

D
G(x − y, kt)µ0(y)dy −

∫ t

0

∫
∂D

k
∂

∂νy
G(x − y, k(t − s)) f (y, s)dσyds.

The solution form by using Green function method gives us a direct way to compute the solution
of (2.1). However, to compute the solution we need first compute the Green’s function (2.10), which
does not have an explicit form in most cases. However for D = R × R+ we can find the Green function
by using the reflection method. We have the following theorem
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Theorem 2.3. The solution to (2.1) can be represented by

u(x1, x2, t) =
∫ ∞

−∞

1
4kπt

e−
(x1−y1)2

4kt

∫ ∞

0

(
e−

(x2−y2)2

4kt − e−
(x2+y2)2

4kt
)
µ0(y1, y2)dy2dy1

− y
∫ t

0

1
4kπ(t − s)2 e−

x2
2

4k(t−s)

∫ ∞

−∞

e−
(x1−y1)2

4k(t−s) f (y1, s)dy1ds

The proofs of Theorem 2.2 and 2.3 can be found in Appendix. We have shown the solution to
the forward problem (2.1) with nonhomogeneous boundary condition. The solution is an integral form
associated with the Green function. We shall use this solution form to reconstruct the initial temperature
distribution from final overdetermination.

3. The inverse problem

The inverse problem we consider in this paper is the reconstruction of the initial temperature distri-
bution µ0(x) and generally the solution u(x, t) from the following problem

ut = k∆u (x, t) ∈ R × R+ × (0,T ),
u(x,T ) = µT (x) x ∈ R × R+,
u(x1, 0, t) = f (x1, t) (x1, t) ∈ R × (0,T ).

(3.1)

We suppose f (x1, t) ∈ L2(R × (0,T )) and µT (x) ∈ L2(R × R+). For convenience to use the Fourier
transform we also suppose those functions are in L1 for any fixed time t. Define ∥ · ∥ as the L2 norm
with respect to x in R × R+. Denote by GD the operator on L2(R × R+)

GD[µ](x) :=
∫

D
G(x, y, kT )µ(y)dy (3.2)

where
G(x, y, kT ) =

1
4kπT

e−
(x1−y1)2

4kT
(
e−

(x2−y2)2

4kT − e−
(x2+y2)2

4kT .
)

By setting t = T in the solution form in Theorem 2.3 we get

GD[µ0](x) = h(x), x ∈ R × R+ (3.3)

where

h(x) = µT (x) + y
∫ T

0

1
4kπ(T − s)2 e−

x2
2

4k(T−s)

∫ ∞

−∞

e−
(x1−y1)2

4k(T−s) f (y1, s)dy1ds. (3.4)

The inverse problem here is to solve the integral equation (3.3) to get the initial temperature distribution
µ0(x). We see that GD is an integral operator with the kernel G(x, kT ). The following properties on the
operator GD is straight forward

Lemma 3.1. The operator GD in (3.3) is a self-adjoint and bounded operator on L2(R × R+).

Proof. Since the kernel of the operator GD is symmetric we immediately get that GD is self-adjoint
on L2(R × R+). We shall show the bound of GD on L2(R × R+). Define

µ(x1, x2) =
{
µ0(x1, x2) y > 0
−µ0(x1,−x2) y < 0.
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Then there holds
GD[µ0](x) =

1
4kπT

∫
R2

e−
|x−y|2
4kT µ(y)dy

where x = (x1, x2). It is easy to see that the right hand side above is a convolution of functions 1
4kπT e−

|x|2
4kT

and µ(x). Thus by Young’s inequality we have

∥GD[µ0]∥ ≤ ∥
1

4kπT
e−

|x|2
4kT ∥L1(R2)∥µ∥L2(R2) = 2∥µ0∥

which completes the proof. □
We shall explore a method to solve (3.3). To proceed, we present some preliminary results

Lemma 3.2. There holds the following identities

1
√

4kπt

∫ ∞

−∞

y2ne−
y2
4kt dy =

{
1 n = 0
(kt)n (2n)!

n! n = 1, 2, . . .
(3.5)

and
1
√

4kπt

∫ ∞

−∞

cos(yη)e−
y2
4kt dy = e−η

2kt. (3.6)

Proof. For n = 0 the result is obvious. We assume n ≥ 1. Define

In :=
1
√

4kπt

∫ ∞

−∞

y2ne−
y2
4kt dy

then by integral by parts we have

In =
1
2

1
√

4kπt

∫ ∞

−∞

y2n−1e−
y2
4kt dy2 = 2kt(2n − 1)In−1

and thus by recursion we obtain

In = (2kt)n
n∏

j=1

(2 j − 1)I0 = (kt)n (2n)!
n!

.

Next by Taylor expansion of cos(mπy) we have∫ ∞

−∞

cos(yη)
1
√

4kπt
e−

y2
4kt dy =

∫ ∞

−∞

∞∑
n=0

(−1)n (yη)2n

(2n)!
1
√

4kπt
e−

y2
4kt dy

=

∞∑
n=0

(−1)nη2n

(2n)!

∫ ∞

−∞

y2n 1
√

4kπt
e−

y2
4kt dy

=

∞∑
n=0

(−1)nη2n

(2n)!
(kt)n (2n)!

n!
= e−η

2kt

which completes the proof. □
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Lemma 3.3. There holds the following identity

1
√

4kπt

∫ ∞

−∞

eiyηe−
(x−y)2

4kt dy = e−η
2kteixη (3.7)

where i is the imaginary unit.

Proof. By using (3.6) and some elementary calculations we have

1
√

4kπt

∫ ∞

−∞

eiyηe−
(x−y)2

4kt dy =
1
√

4kπt

∫ ∞

−∞

ei(x+y)ηe−
y2
4kt dy

=
1
√

4kπt

∫ ∞

−∞

[
cos((x + y)η) + i sin((x + y)η)

]
e−

y2
4kt dy

= cos(xη)
1
√

4kπt

∫ ∞

−∞

cos(yη)e−
y2
4kt dy + i sin(xη)

1
√

4kπt

∫ ∞

−∞

cos(yη)e−
y2
4kt dy

= (cos(xη) + i sin(xη))e−η
2π2kt = eixηe−η

2kt.

□
With (3.7) on hand, we can get the following result

Theorem 3.1. There holds the following relation

GD[eix0ξ sin(y0η)](x, y) = e−(ξ2+η2)kT eixξ sin(yη). (3.8)

Proof. By using the definition of GD in (3.2) we have

GD[eix0ξ sin(y0η)](x, y)

=
1

4kπT

∫ ∞

−∞

e−
(x−x0)2

4kT eix0ξdx0

∫ ∞

0

(
e−

(y−y0)2

4kT − e−
(y+y0)2

4kT
)

sin(y0η)dy0.

By using change of variables we have∫ ∞

0

(
e−

(y−y0)2

4kT − e−
(y+y0)2

4kT
)

sin(y0η)dy0 =

∫ ∞

−∞

e−
(y−y0)2

4kT sin(y0η)dy0

thus by using (3.7) we finally get

GD[eix0ξ sin(y0η)](x, y) = e−ξ
2kT eixξe−η

2kT sin(yη)

which completes the proof. □
The relation (3.8) inspires us that we can actually use the Fourier transform to solve (3.3). To do

this, we shall actually extend the functions µ0(x) and h(x) to R2 by setting

µ0(x1, x2) = −µ0(x1,−x2) h(x1, x2) = −h(x1,−x2) x2 < 0.

Under this kind of extension we have

GD[µ0](x) =
1

4kπT

∫
R2

e−
(x1−y1)2+(x2−y2)2

4kT µ0(y1, y2)dy1dy2. (3.9)
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and
GD[µ0](x) = h(x), x ∈ R2. (3.10)

Define the Fourier transform operator F by

µ̂(ξ) = F {µ}(ξ) =
1

2π

∫
R2
µ(x)e−ix·ξdx (3.11)

and the corresponding inverse Fourier transform F −1 by

µ(x) = F −1{µ̂}(x) =
1

2π

∫
R2
µ̂(ξ)eix·ξdξ (3.12)

where ξ = (ξ, η). Then by taking the Fourier transform on both sides of (3.10) and using (3.7) we
obtain

F {h}(ξ) = F {GD[µ0]}(ξ) = e−kT |ξ|2 µ̂0(ξ).

Thus we have
µ̂0(ξ) = ekT |ξ|2 ĥ(ξ) (3.13)

and so
µ0(x) =

1
2π

∫
R2

ekT |ξ|2 ĥ(ξ)eix·ξdξ.

We mention that to get µ̂0(ξ) directly from (3.13) is quite unstable especially when the data h(x) is
not exactly given. We shall use the iteration schemes to solve this kind of problem when the final
over determination µT (x) and the boundary measurement f (x, t) are not exactly given. For the sake of
simplicity we denote by hϵ(x) the perturbation of the function h(x) in (3.3) and satisfies

∥hϵ − h∥ ≤ ϵ, ϵ > 0 (3.14)

where ϵ is a small number which can be treated as the noise level of the measurement. Similar to [13,
14], we introduce the following iteration scheme to solve (3.13)

µ̂ϵj(ξ) = (1 − n
√

v(ξ))µ̂ϵj−1(ξ) +
n
√

v(ξ)
v(ξ)

χςĥϵ(ξ), (3.15)

where
v(ξ) = e−kT |ξ|2

and χς is the characteristic function of ς = {ξ| k|ξ|2 ≤ ρ}, that is

χς =

{
1 k|ξ|2 ≤ ρ
0 k|ξ|2 > ρ

.

The parameter ρ here is a selective positive number which can be chosen in a flexible way depending on
the stopping rule that is used for terminating the iteration scheme. The parameter n is a selective nature
number which is used to control the iteration speed. Generally speaking, the lager n is the less iteration
steps are required to get an approximate solution. The iterative steps actually decrease exponentially
with the parameter n increase normally. However, the error estimation for the solution behaviors badly
as n increases as well.
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4. Fourier transform of h

The iteration scheme (3.15) requires us to get the Fourier transform of the perturbation hϵ(x). In
fact, the perturbation comes from the noise of the final observation µT and the boundary condition f in
(3.4). In this section we consider the Fourier transform of h. To extend h to R2 we only need to extend
the final observation µT (x) by

µT (x1, x2) = −µT (x1,−x2), x2 < 0.

We observe that (3.4) can be written as follows

h(x) = µT (x) − 2k
∫ T

0

1
√

4kπ(T − s)
∂

∂y
e−

x2
2

4k(T−s)

∫ ∞

−∞

1
√

4kπ(T − s)
e−

(x1−y1)2

4k(T−s) f (y1, s)dy1ds. (4.1)

Taking the Fourier transform on both sides of (4.1) and using (3.7) we get

ĥ(ξ) = µ̂T (ξ) −
2ikη
√

2π

∫ T

0
e−k|ξ|2(T−s) f̂ (ξ, s)ds (4.2)

where by f̂ (ξ, s) we mean the one dimensional Fourier transform of f (x1, s) on x1, i.e.,

f̂ (ξ, s) =
1
√

2π

∫ ∞

−∞

f (x1, s)e−iξx1dx1

and so the inverse one dimensional Fourier transform is

f (x1, s) =
1
√

2π

∫ ∞

−∞

f̂ (ξ, s)eiξx1dξ.

5. Error estimates

In this section, we consider the convergence results of iteration scheme (3.15) by using both the a
priori and the a posteriori stopping rules. Before presenting the error estimate of the initial temperature
distribution µ0(x), we suppose the a priori bound on µ0(x)

∥µ0∥p ≤ M, p ≥ 0 (5.1)

where

∥µ0∥p :=
(∫
R2

(1 + |ξ|2)p
|µ̂0(ξ)|2dξ

) 1
2

.

We see that if p = 0 then the norm ∥ · ∥p turns to L2 norm.

5.1. The a priori stopping rule

By using the prior information (5.1) we can design the following stopping rule

j ∼
⌊
(M/ϵ)1/n

⌋
(5.2)

where ⌊a⌋ denotes the largest integer that is not greater than a. We note that in the stopping rule (5.2),
if n increases then the iteration steps j are greatly reduced.
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Theorem 5.1. Let µ0(x) be the initial temperature distribution in (3.1). Suppose µϵT (x) is the measured
temperature at t = T and f ϵ(x1, t) is the measured boundary condition. Suppose the corresponding
function hϵ(x) by (3.4) satisfies (3.14). Let µϵj(x) be the iterates defined by (3.15) with initial iterate

µϵ0(x) = 0. If (5.1) is satisfied for M > 0, p > 0 and we select j ∼
⌊
(M/ϵ)1/n

⌋
as the prior stopping rule

and

ρ =
1
T

ln(
M
δ

(ln
M
δ

)
−

p
2

)

then we have the following error estimate

∥∥∥µϵj − µ0

∥∥∥2
≤ 2M2

(
ln

M
δ

)−p
1 +Cn2n + 2kpT p

 ln M
δ

ln M
δ
+ ln (ln M

δ
)−

p
2


p (5.3)

where C is a constant depending on j and n.

Proof. Set α = n
√

v(ξ) then 0 < α ≤ 1. By (3.15) we obtain

µ̂ϵj(ξ) = (1 − α)µ̂ϵj−1(ξ) + α1−nχςĥϵ(ξ)

=

j−1∑
i=0

(1 − α)iα1−nχςĥϵ(ξ).

Take p j(α) =
j−1∑
i=0

(1 − α)i, r j(α) = 1 − αp j(α) = (1 − α) j, we have the following elementary results

(cf. [33]):

p j(λ)λm ≤ j1−m, for all 0 ≤ m ≤ 1, (5.4)
r j(λ)λq ≤ θq( j + 1)−q, (5.5)

where

θq =

{
1 0 ≤ q ≤ 1
qq q > 1.

From (3.13) we have
µ̂0(ξ) = α−nĥ(ξ)

then there holds the estimates∥∥∥µ̂ϵj − µ̂0

∥∥∥2
=

∥∥∥p j(α)α1−nχςĥϵ − µ̂0

∥∥∥2

=
∥∥∥p j(α)α1−n(χςĥϵ − ĥ) − r j(α)µ̂0

∥∥∥2

≤ 2
∥∥∥p j(α)α1−n(χςĥϵ − ĥ)

∥∥∥2
+ 2

∥∥∥r j(α)µ̂0

∥∥∥2

:= 2I1 + 2I2.

Next we derive the estimates for I1 and I2, respectively.

I1 =
∥∥∥p j(α)α1−n(χςĥϵ − ĥ)

∥∥∥2
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=

∫
ς

∣∣∣p j(α)α1−n(χςĥϵ(ξ) − ĥ(ξ))
∣∣∣2dξ +

∫
R2\ς

∣∣∣p j(α)α1−n(χςĥϵ(ξ) − ĥ(ξ))
∣∣∣2dξ

≤

∫
ς

∣∣∣α−n(ĥϵ(ξ) − ĥ(ξ))
∣∣∣2dξ +

∫
R2\ς

(1 + |ξ|2)−p(1 + |ξ|2)p
|µ̂0(ξ)|2dξ.

By using the definition of ς and the choice of ρ we thus have

I1 ≤ e2ρT ϵ2 + σpρ−pM2

≤ (
M
ϵ

)
2

(ln
M
ϵ

)
−p

ϵ2 + kpT p

ln(
M
ϵ

(ln
M
ϵ

)
−

p
2

)
−p

M2

≤ M2(ln
M
ϵ

)
−p

(1 + kpT p

 ln M
ϵ

ln M
ϵ
+ ln (ln M

ϵ
)−

p
2


p

).

With similar strategy and (5.2) we estimate I2

I2 =
∥∥∥r j(α)µ̂0

∥∥∥2
=

∫
ς

∣∣∣r j(α)µ̂0(ξ)
∣∣∣2dξ +

∫
R2\ς

∣∣∣r j(α)µ̂0(ξ)
∣∣∣2dξ

=

∫
ς

∣∣∣∣∣rk(α)αn v(ξ, t)
v(ξ,T )

φ̂1(ξ)
∣∣∣∣∣2dξ +

∫
R2\ς

(1 + |ξ|2)−p(1 + |ξ|2)p∣∣∣r j(α)µ̂0(ξ)
∣∣∣2dξ

≤ n2n( j + 1)−2ne2ρT M2 + kpρ−pM2

≤ Cn2n(
M
ϵ

)
2

(ln
M
ϵ

)
−p

ϵ2 + kpT p

ln(
M
ϵ

(ln
M
ϵ

)
−

p
2

)
−p

M2

≤ M2(ln
M
ϵ

)
−p

(Cn2n + kpT p

 ln M
ϵ

ln M
ϵ
+ ln (ln M

ϵ
)−

p
2


p

),

where (5.5) and the choice of ρ are taken into account and the selection of constant C is only dependent
on j and n. We come to the conclusion by combining the estimates of I1 and I2 and using Parseval
equality. □

5.2. The a posteriori stopping rule

The prior stopping rule needs the a priori bound of µ0 to stop the iteration process. However if such
bound can not be obtained accurately, the iteration may not stop at a ”good time” and thus the result
may not be satisfactory. Thus an a posteriori stopping rule is required. We introduce the widely-used
”discrepancy principle” due to Morozov [34]. We set the discrepancy principle in the following form∥∥∥ĥϵ − vµ̂ϵj∗

∥∥∥ ≤ τϵ < ∥∥∥ĥϵ − vµ̂ϵj
∥∥∥ , 0 < j < j∗ (5.6)

where k∗ is the first iteration step which satisfies the left inequality of (5.6).

Theorem 5.2. Let µ0(x) be the initial temperature distribution in (3.1). Suppose µϵT (x) is the measured
temperature at t = T and f ϵ(x, t) is the measured boundary condition. Suppose the corresponding
function hϵ(x) by (3.4) satisfies (3.14). Let µϵj(x) be the iterates defined by (3.15) with initial iterate
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µϵ0(x) = 0. If (5.1) is satisfied for M > 0, p > 0 and we select the discrepancy principle (5.6) as the
stopping rule and

ρ =
1
T

ln(
M
δ

(ln
M
δ

)
−

p
2

)

then we have the following error estimate

∥∥∥µϵj − µ0

∥∥∥2
≤ 2M2

(
ln

M
δ

)−p
1 +Cn2n + 2kpT p

 ln M
δ

ln M
δ
+ ln (ln M

δ
)−

p
2


p (5.7)

where C is a constant depending on j and n.

Proof. It sufficient to prove j∗ ∼ (M/ϵ)1/n by Theorem 5.1. We have∥∥∥χςĥϵ − vµ̂ϵj
∥∥∥ = ∥∥∥(1 − α)(χςĥϵ − vµ̂ϵj−1)

∥∥∥ = ∥∥∥(1 − α) jχςĥϵ
∥∥∥

≤
∥∥∥(1 − α) j(ĥϵ − ĥ)

∥∥∥ + ∥∥∥(1 − α) jĥ
∥∥∥

≤ ϵ +
∥∥∥r j(α)αnµ̂0

∥∥∥ ≤ ϵ + nn j−nM,

furthermore ∥∥∥(1 − χς)ĥϵ
∥∥∥ ≤ ∥∥∥(1 − χς)(ĥϵ − ĥ)

∥∥∥ + ∥∥∥(1 − χς)ĥ
∥∥∥

≤ ϵ +

(∫
R2\ς

|v(ξ)µ̂0(ξ)|2dξ
)1/2

≤ ϵ + e−ρT M ≤ 2ϵ

thus we obtain ∥∥∥ĥϵ(·) − vµ̂ϵj(·, t)
∥∥∥ ≤ 3ϵ + nn j−nM,

Set τ > 3 and according to (5.6) we have (τ − 3)ϵ < nn j−nM and thus j ∼
⌊
( M
ϵ

)1/n⌋. □
We remark that although the parameter ρ appears in (3.15) requires the a priori bound on µ0, we

do not care much on the choice. In fact the choice of ρ is just for technique setup. We can actually
set a very large number M such that it is lager than the sharp upper bound on µ0. By using the
discrepancy principle (5.6) as the stopping rule, the convergence rate and reconstruction performance
are still ensured.

6. Conclusions

We have introduced the layer potential technique to get the analytic solution of the heat diffusion
problem in the half plane. The Green function has been constructed to avoid the usage of the Neumann
boundary condition. We have combined the Fourier transform and the Green function method to get the
relation between the initial temperature distribution and the given final observation. We designed an
iteration scheme to reconstruct the initial temperature distribution. Although the whole analysis is on
two dimensional space heat conduction problem, it can be similar used to analyze higher dimensional
problem. The method can also be used to reconstruct the initial heat distribution on any kind of domain
and numerical realization of two and three dimensional inverse heat conduction problem will be a
forthcoming work.
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A. Proofs of Theorem 2.1 to 2.3

In this section, we show the main proofs to some Theorems for the sake of convenience to the
reader.

Proof of Theorem 2.1 By using the Green’s theorem, we have∫ t

0

∫
∂D

k
∂

∂νy
Γ(x − y, k(t − s))u(y, s) − Γ(x − y, k(t − s))k

∂

∂νy
u(y, s)dσyds

=

∫ t

0

∫
D

k∆yΓ(x − y, k(t − s))u(y, s) − Γ(x − y, k(t − s))k∆yu(y, s)dyds

=

∫ t

0

∫
D
Γt(x − y, k(t − s))u(y, s) − Γ(x − y, k(t − s))us(y, s)dyds

=

∫ t

0

∫
D
−Γs(x − y, k(t − s))u(y, s) − Γ(x − y, k(t − s))us(y, s)dyds

=

∫
D
−Γ(x − y, k(t − s))u(y, s)

∣∣∣∣t
s=0

dy = −u(x, t) +
∫

D
Γ(x − y, kt)u(y, 0)dy

where we have changed the order of integration and used the integral by parts. Thus there holds

u(x, t) = Vk
D[µ0](x, t) + Sk

D[∂u/∂ν](x, t) − kDD[ f ](x, t)

which completes the proof. □
Proof of Theorem 2.2 We first show the relation between G(x, t) and Γ(x, t). If fact, let v(x, t) be

the solution to 
vt = ∆v in D × R+
v(x, 0) = 0 in D
v(x, t) = Γ(x, t) on ∂D × R+

then it is easy to see that
G(x, t) = Γ(x, t) − v(x, t).

By using the Green’s formula there holds for u(x, t) and v(x, t)∫
D

v(x − y, kt)µ0(y)dy +
∫ t

0

∫
∂D

v(x − y, k(t − s))k
∂

∂νy
u(y, s)dσyds

−

∫ t

0

∫
∂D

k
∂

∂νy
v(x − y, k(t − s))u(y, s)dσyds = 0
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By subtracting the above equation from (2.6) and using the fact that

G(x, t) = 0, (x, t) ∈ ∂D × R+

we immediately get the conclusion. □
Proof of Theorem 2.3 Let x = (x1, x2), y = (y1, y2). By using the reflection method, it is easy to

find the Green function of (2.10) for D = R × R+

G(x − y, t) =
1

4kπt

(
e−

(x1−x2)2+(y1−y2)2

4kt − e−
(x1−x2)2+(y1+y2)2

4kt
)

To use the result in Theorem 2.2, we compute

∂

∂νy
G(x − y, k(t − s))

∣∣∣∣
∂D
= −

∂

∂y0
G(x − y, k(t − s))

∣∣∣∣
y0=0

=
y

4k2π(t − s)2 e−
(x1−y1)2+x2

2
4k(t−s) .

By substituting the Green function and the above formula into the solution form in Theorem 2.2 we
come to the conclusion. □
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16. D. N. Háo, H-J. Reinhardt, On a sideways parabolic equation, Inverse Probl., 13 (1997), 297–309.
https://doi.org/10.1088/0266-5611/13/2/007
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