A new characterization of the weighted Taibleson's theorem for generalized Hölder spaces is given via a Hadamard-Liouville type operator (Djrbashian's generalized fractional operator).
Citation: Humberto Rafeiro, Joel E. Restrepo. Revisiting Taibleson's theorem[J]. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029
A new characterization of the weighted Taibleson's theorem for generalized Hölder spaces is given via a Hadamard-Liouville type operator (Djrbashian's generalized fractional operator).
[1] | H. Aikawa, Hölder continuity of the Dirichlet solution for a general domain, Bull. London Math. Soc., 34 (2002), 691–702. https://doi.org/10.1112/S0024609302001522 doi: 10.1112/S0024609302001522 |
[2] | D. I. Cruz-Báez, J. Rodríguez, On new characterizations of Lipschitz and Besov type spaces, Arch. Math., 79 (2002), 39–45. https://doi.org/10.1007/s00013-002-8282-5 doi: 10.1007/s00013-002-8282-5 |
[3] | A. Hinkkanen, Modulus of continuity of harmonic functions, J. Analyse Math., 51 (1988), 1–29. https://doi.org/10.1007/BF02791117 doi: 10.1007/BF02791117 |
[4] | M. H. Taibleson, Lipschitz classes of functions and distributions in $E_n$, Bull. Am. Math. Soc., 69 (1963), 487–493. https://doi.org/10.1090/S0002-9904-1963-10972-6 doi: 10.1090/S0002-9904-1963-10972-6 |
[5] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Hardy-type operators in variable exponent lebesgue spaces, in Operator Theory: Advances and Applications, Springer, (2016), 1–26. https://doi.org/10.1007/978-3-319-21015-5_1 |
[6] | N. K. Bari, S. B. Stechkin, Best approximations and differential properties of two conjugate functions, Trudy Mosk. Mat. Obshch., 5 (1956), 483–522. |
[7] | S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, 1993. |
[8] | F. E. Enriquez, Characterization of spaces with non-integer differentiation in terms of harmonic prolongations[Master's Thesis]. Moscow: Peoples Friendship University of Russia; 1995. |
[9] | A. M. Jerbashian, V. A. Jerbashian, Functions of $\omega$-bounded type in the half-plane, Comput. Methods Funct. Theor., 7 (2007), 205–238. https://doi.org/10.1007/BF03321641 doi: 10.1007/BF03321641 |
[10] | A. M. Jerbashian, J. E. Restrepo, A boundary property of some subclasses of functions of bounded type in the half-plane, Fract. Calc. Appl. Anal., 20 (2017), 1531–1544. https://doi.org/10.1515/fca-2017-0080 doi: 10.1515/fca-2017-0080 |
[11] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. https://doi.org/10.1515/9781400883882 |