Citation: Akim Kapsalyamov, Shahid Hussain, Prashant K. Jamwal. A novel compliant surgical robot: Preliminary design analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 1944-1958. doi: 10.3934/mbe.2020103
[1] | W. Peh, CT-guided percutaneous biopsy of spinal lesions, Biomed. Imag. Interv. J., 2 (2006), e25. |
[2] | S. Yinhao, A. Gang, Z. Jianxun, C. Yanqiu, Medical robotic system for minimally invasive spine surgery, 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008 (2008), 1703-1706. |
[3] | D. E. Ott, Unique laparoscopic access port for improving gas delivery, quality and surgical outcomes, J. Med. Devices, 8 (2014), 030916. |
[4] | A. Talasaz, A. L. Trejos, S. Perreault, H. Bassan, R. Patel, A dual-arm 7-degrees-of-freedom haptics-enabled teleoperation test bed for minimally invasive surgery, J. Med. Devices, 8 (2014), 041004. |
[5] | A. Pourghodrat, C. Nelson, D. Oleynikov, Electrohydraulic robotic manipulator with multiple instruments for minimally invasive surgery, J. Med. Devices, 8 (2014), 030919. |
[6] | A. Pourghodrat, C. Nelson, Miniature fluidic actuators for surgical robotics, J. Med. Devices, 8 (2014), 030920. |
[7] | H. Kumon, M. Murai, S. Baba, Endourooncology: New horizons in endourology, Springer, (2010), 39-46. |
[8] | M. Hadavan, A. Mirbagheri, H. Salarieh, F. Farahmand, Design of a force-reflective master robot for haptic telesurgery applications: Robomaster1, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011 (2011), 7037-7040. |
[9] | K. Y. Kim, H. S. Song, J. W. Suh, J. J. Lee, A novel surgical manipulator with workspace-conversion ability for telesurgety, IEEE/ASME Transact. Mechatron., 18 (2013), 200-211. |
[10] | R. E. Goldman, A. Bajo, N. Simaan, Compliant motion control for continuum robots with intrinsic actuation sensing, IEEE International Conference on Robotics and Automation, 2011 (2011), 1126-1132. |
[11] | K. Cleary, C. Nguyen, State of the art in surgical robotics: Clinical applications and technology challenges, Comput. Aided Surg., 6 (2001), 312-328. |
[12] | A. E. Quaid, R. A. Abovitz, Haptic information displays for computer-assisted surgery, Proc. IEEE Int. Conf. Robotics and Automation, 2 (2002), 2092-2097. |
[13] | D. Stoianovici, Robotic surgery, World J. Urology, 18 (2000), 289-295. |
[14] | M. Jakopec, S. J. Harris, F. R. Y. Baena, P. Gomes, J. Cobb, B. L. Davies, The first clinical application of a hands-on robotic knee surgery system, Comput. Aided Surg., 6 (2001), 329-339. |
[15] | S. M. Sajadi, S. H. Mahdioun, A. A. Ghavifekr, Design of mechanical structure and tracking control system for 5 DOF surgical robot, 21st Iranian Conference on Electrical Engineering (ICEE), 2013 (2013), 1-6. |
[16] | B. F. Yousef, F. M. T. Aiash, A mechanism for surgical tool manipulation, 9th Asian Control Conference (ASCC), 2013 (2013), 1-5. |
[17] | Y. Ping-Lang, K. Zhi-Wei, L. Tien-Sen, L. Chung-Wei, Development of a new safety-enhanced surgical robot using the hexaglide structure, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 3 (2004), 2162-2167. |
[18] | J. Funda, R. Taylor, B. Eldridge, S. Gomory, K. Gruben, Constrained Cartesian motion control for teleoperated surgical robots, IEEE Transact. Robot. Automat., 12 (1996), 453-465. |
[19] | H. Seno, K. Kawamura, Y. Kobayashi, M. G. Fujie, Pilot study of design method for surgical robot using workspace reproduction system, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011 (2011), 4542-4545. |
[20] | B. Fei, W. S. Ng, The safety issues of medical robotics, Reliab. Eng. Syst. Safety, 73 (2001), 183-192. |
[21] | Q. Du, Q. Huang, L. Tian, C. Liu, Mechanical design and control system of a minimally invasive surgical robot system, International Conference on Mechatronics and Automation, 2006 (2006), 1120-1125. |
[22] | Y. Fu, G. Niu, B. Pan, K. Li, S. Wang, Design and optimization of remote center motion mechanism of minimally invasive surgical robotics, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013 (2013), 774-779. |
[23] | R. C. O. Locke, R. V. Patel, Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery, IEEE International Conference on Robotics and Automation, 2007 (2007), 1900-1905. |
[24] | L. Yang, C. B. Chng, C. K. Chui, D. Lau, Model-based design analysis for programmable remote center of motion in minimally invasive surgery, IEEE Conference on Robotics, Automation and Mechatronics, 2010 (2010), 84-89. |
[25] | M. M. Dalvand, B. Shirinzadeh, Remote centre-of-motion control algorithms of 6-RRCRR parallel robot assisted surgery system (PRAMiSS), IEEE International Conference on Robotics and Automation, 2012 (2012), 3401-3406. |
[26] | J. T. Wilson, T. Tsu-Chin, J. Hubschman, S. Schwartz, Evaluating remote centers of motion for minimally invasive surgical robots by computer vision, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010 (2010), 1413-1418. |
[27] | U. Hagn, R. Konietschke, A. Tobergte, MiroSurge: A versatile system for research in endoscopic telesurgery, Int. J. Comput. Assist. Radiol. Surg., 5 (2010), 183-193. |
[28] | U. Hagn, M. Nickl, S. Jörg, The DLR MIRO: A versatile lightweight robot for surgical applications, Industr. Robot Int. J., 35 (2008), 324-336. |
[29] | R. Konietschke, U. Hagn, M. Nickl, S. Jörg, A. Tobergte, G. Passig, et al., The dlr mirosurge—a robotic system for surgery, IEEE International Conference on Robotics and Automation, 2009 (2009), 1589-1590. |
[30] | M. Stark, T. Benhidjeb, S. Gidaro, The future of telesurgery: A universal system with haptic sensation, J. Turkish-German Gynecol. Assoc., 13 (2012), 74-76. |
[31] | H. Choi, H. J. Kim, Y. Lim, H. Kwak, J. Jang, J. Won, Conically shaped remote center-of-motion mechanism for single-incision surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013 (2013), 3604-3609. |
[32] | P. Li, H. M. Yip, D. Navarro-Alarcon, Y. Liu, C. F. M. Tong, I. Leung, Development of a robotic endoscope holder for nasal surgery, IEEE International Conference on Information and Automation (ICIA), 2013 (2013), 1194-1199. |
[33] | I. G. French, C. S. Cox, Modelling, design and control of a modern electropneumatic actuator, IEE Proceedings D - Control Theory and Applications, 137 (1990), 145-155. |
[34] | K. Ikuta, T. Kato, H. Ooe, S. Ando, Surgery recorder system" for recording position and force of forceps during laparoscopic surgery, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007 (2007), 1-6. |
[35] | J. Y. Lai, C. H. Menq, R. Singh, Accurate Position Control of a Pneumatic Actuator, American Control Conference, 1989 (1989), 1497-1502. |
[36] | N. Kemmer, Vector Analysis, Cambridge University Press, 1977. |
[37] | I. Uzmay, S. Yildirim, Geometric and algebraic approach to the inverse kinematics of four-link manipulators, Robotica, 12 (1994), 59-64. |
[38] | S. Kadry, Mathematical Formulas for Industrial and Mechanical Engineering, Elsevier, (2014), 31-51. |
[39] | S. Favorov, Discrete unbounded sets in a finite dimensional space and beyond, Electron. Notes Discrete Math., 43 (2013), 389-395. |
[40] | A. Zollanvari, E. R. Dougherty, Moments and root-mean-square error of the Bayesian MMSE estimator of classification error in the Gaussian model, Pattern Recogn., 47 (2014), 2178-2192. |
[41] | S. K. Agrawal, S. K. Banala, A. Fattah, V. Sangwan, V. Krishnamoorthy, J. P. Scholz, et al., Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng., 15 (2007), 410-420. |
[42] | S. Mas-Coma, V. H. Agramunt, M. A. Valero, Neurological and ocular fascioliasis in humans, Adv. Parasitol., 84 (2014), 27-149. |
[43] | J. L. Sun, S. Y. Xing, Short-term outcome of laparoscopic surgery versus open surgery on colon carcinoma: A meta-analysis, Math. Biosci. Eng., 16 (2019), 4645-4659. |