Review

A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits

  • Received: 30 January 2023 Revised: 12 February 2023 Accepted: 20 February 2023 Published: 02 March 2023
  • Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice.

    Citation: Kai Cheng, Lixia Li, Yanmin Du, Jiangtao Wang, Zhenghua Chen, Jian Liu, Xiangsheng Zhang, Lin Dong, Yuanyuan Shen, Zhenlin Yang. A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8375-8399. doi: 10.3934/mbe.2023367

    Related Papers:

  • Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice.



    加载中


    [1] E. Crosas-Molist, R. Samain, L. Kohlhammer, J. L. Orgaz, S. L. George, O. Maiques, et al., Rho gtpase signaling in cancer progression and dissemination, Phys. Rev., 102 (2022), 455–510. https://doi.org/10.1152/physrev.00045.2020 doi: 10.1152/physrev.00045.2020
    [2] A. F. Chambers, A. C. Groom, I. C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, 2 (2002), 563–572. https://doi.org/10.1038/nrc865 doi: 10.1038/nrc865
    [3] M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist, et al., Phases of biomarker development for early detection of cancer, JNCI-J NATL Cancer I, 93 (2001), 1054–1061. https://doi.org/10.1038/nrc865 doi: 10.1038/nrc865
    [4] R. A. Smith, V. Cokkinides, H. J. Eyre, American cancer society guidelines for the early detection of cancer, 2006, CA Cancer J. Clin., 56 (2006), 11–25. https://doi.org/10.3322/canjclin.52.1.8 doi: 10.3322/canjclin.52.1.8
    [5] M. Richards, The size of the prize for earlier diagnosis of cancer in england, Br. J. Cancer, 101 (2009), S125–S129. https://doi.org/10.1038/sj.bjc.6605402 doi: 10.1038/sj.bjc.6605402
    [6] X. Chen, J. Gole, A. Gore, Q. He, M. Lu, J. Min, et al., Non-invasive early detection of cancer four years before conventional diagnosis using a blood test, Nat. Commun., 11 (2020), 1–10. https://doi.org/10.1038/s41467-020-17316-z doi: 10.1038/s41467-020-17316-z
    [7] R. Guo, G. Lu, B. Qin. B. Fei, Ultrasound imaging technologies for breast cancer detection and management: A review, Ultrasound Med. Biol., 44 (2018), 37–70. https://doi.org/10.1016/j.ultrasmedbio.2017.09.012 doi: 10.1016/j.ultrasmedbio.2017.09.012
    [8] K. Bouchelouche, B. Turkbey, P. Choyke, J. Capala, Imaging prostate cancer: An update on positron emission tomography and magnetic resonance imaging, Curr. Urol. Rep., 11 (2010), 180–190. https://doi.org/10.1007/s11934-010-0105-9 doi: 10.1007/s11934-010-0105-9
    [9] Q. Zhou, J. Dong, J. He, D. Liu, D. H. Tian, S. Gao, et al., The society for translational medicine: indications and methods of percutaneous transthoracic needle biopsy for diagnosis of lung cancer, J. Thorac. Dis., 10 (2018), 5538. https://doi.org/10.21037/jtd.2018.09.28 doi: 10.21037/jtd.2018.09.28
    [10] E. I. Kreydin, B. H. Eisner, Risk factors for sepsis after percutaneous renal stone surgery, Nat. Rev. Urol., 10 (2013), 598–605. https://doi.org/10.1038/nrurol.2013.183 doi: 10.1038/nrurol.2013.183
    [11] L. Lehrskov, M. Westen, S. Larsen, A. Jensen, B. Kristensen, T. Bisgaard, Fluorescence or x-ray cholangiography in elective laparoscopic cholecystectomy: A randomized clinical trial, Br. J. Surg., 107 (2020), 655–661. https://doi.org/10.1002/bjs.11510 doi: 10.1002/bjs.11510
    [12] H. Su, W. Qi, J. Chen, D. Zhang, Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint, IEEE Transact. Fuzzy Syst., 30 (2022), 1564–1573. https://doi.org/10.1109/TFUZZ.2022.3157075 doi: 10.1109/TFUZZ.2022.3157075
    [13] R. Barua, S. Datta, Modernization of robotics application in 21st century: A review, J Mech Robot, 5 (2020). https://doi.org/10.46610/JMMDM.2020.05102.005 doi: 10.46610/JMMDM.2020.05102.005
    [14] H. Su, W. Qi, Y. Hu, H. R. Karimi, G. Ferrigno, E. De Momi, An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators, IEEE Transact. Indust. Inform., 18 (2020), 1864–1872. https://doi.org/10.1109/TII.2020.3036693 doi: 10.1109/TII.2020.3036693
    [15] W. Qi, H. Su, A cybertwin based multimodal network for ecg patterns monitoring using deep learning, IEEE Transact. Indust. Inform., 18 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583 doi: 10.1109/TII.2022.3159583
    [16] H. Qiao, J. Chen, X. Huang, A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems, IEEE Transact. Cybernet., 52 (2022), 11267–11280. https://doi.org/10.1109/TCYB.2021.3071312 doi: 10.1109/TCYB.2021.3071312
    [17] A. Joseph, B. Christian, A. A. Abiodun, F. Oyawale, A review on humanoid robotics in healthcare, in MATEC Web of Conferences, vol. 153, EDP Sciences, 2018, 02004. https://doi.org/10.1051/matecconf/201815302004
    [18] S. Chen, F. Wang, Y. Lin, Q. Shi, Y. Wang, Ultrasound-guided needle insertion robotic system for percutaneous puncture, Int. J. CARS., 16 (2021), 475–484. https://doi.org/10.1007/s11548-020-02300-1 doi: 10.1007/s11548-020-02300-1
    [19] B. Zhao, Y. Fu, Y. Yang, P. Zhang, Y. Hu, Design and control of a mri-compatible pneumatic needle puncture robot, Comput. Assist Surg., 24 (2019), 87–93. https://doi.org/10.1080/24699322.2019.1649067 doi: 10.1080/24699322.2019.1649067
    [20] H. Su, W. Qi, Y. Schmirander, S. E. Ovur, S. Cai, X. Xiong, A human activity-aware shared control solution for medical human–robot interaction, Assembly Autom., 42 (2022), 388–394. https://doi.org/10.1108/AA-12-2021-0174 doi: 10.1108/AA-12-2021-0174
    [21] L. Zhang, C. Li, Y. Fan, X. Zhang, J. Zhao, Physician-friendly tool center point calibration method for robot-assisted puncture surgery, Sensors, 21 (2021), 366. https://doi.org/10.3390/s21020366 doi: 10.3390/s21020366
    [22] H. Li, Y. Wang, Y. Li, J. Zhang, A novel manipulator with needle insertion forces feedback for robot-assisted lumbar puncture, Int. J. Med. Robot., 17 (2021), e2226. https://doi.org/10.1002/rcs.2226 doi: 10.1002/rcs.2226
    [23] H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi, Toward teaching by demonstration for robot-assisted minimally invasive surgery, IEEE Transact. Autom. Sci. Eng., 18 (2021), 484–494. https://doi.org/10.1109/TASE.2020.3045655 doi: 10.1109/TASE.2020.3045655
    [24] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, et al., The prisma 2020 statement: An updated guideline for reporting systematic reviews, Syst. Rev., 10 (2021), 1–11. https://doi.org/10.1016/j.ijsu.2021.105906 doi: 10.1016/j.ijsu.2021.105906
    [25] P. Zamora-Ortiz, J. Carral-Alvaro, Á. Valera, J. L. Pulloquinga, R. J. Escarabajal, V. Mata, Identification of inertial parameters for position and force control of surgical assistance robots, Mathematics, 9 (2021), 773. https://doi.org/10.3390/math9070773 doi: 10.3390/math9070773
    [26] S. Mukai, H. Egi, M. Hattori, Y. Sumi, Y. Kurita, H. Ohdan, Omnidirectional camera and head-mount display contribute to the safety of laparoscopic surgery, Minim Invasiv. Ther., 31 (2022), 540–547. https://doi.org/10.1080/13645706.2020.1851725 doi: 10.1080/13645706.2020.1851725
    [27] C. Bergeles, G.-Z. Yang, From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots, IEEE Transact. Biomed. Eng., 61 (2013), 1565–1576. https://doi.org/0.1109/TBME.2013.2293815 doi: 10.1109/TBME.2013.2293815
    [28] T. Cheng, W. Li, C. S. H. Ng, P. W. Y. Chiu, Z. Li, Visual servo control of a novel magnetic actuated endoscope for uniportal video-assisted thoracic surgery, IEEE Robot. Autom. Letters, 4 (2019), 3098–3105. https://doi.org/10.1109/LRA.2019.2924838 doi: 10.1109/LRA.2019.2924838
    [29] M. G. Fujie, B. Zhang, State-of-the-art of intelligent minimally invasive surgical robots, Front. Med., 14 (2020), 404–416. https://doi.org/10.1007/s11684-020-0743-3 doi: 10.1007/s11684-020-0743-3
    [30] K. Safiejko, R. Tarkowski, M. Koselak, M. Juchimiuk, A. Tarasik, M. Pruc, et al., Robotic-assisted vs. standard laparoscopic surgery for rectal cancer resection: a systematic review and meta-analysis of 19,731 patients, Cancers, 14 (2022), 180. https://doi.org/10.3390/cancers14010180 doi: 10.3390/cancers14010180
    [31] F.-H. Meng, Y. Song, B. Qiao, N.-H. Jin, Y.-M. Zhu, B.-F. Liang, et al., Image-guided, surgical robot-assisted percutaneous puncture of the foramen ovale and foramina stylomastoideum: A cadaveric study, Chin. Med. J., 134 (2021), 2362–2364. https://doi.org/10.1097/CM9.0000000000001783 doi: 10.1097/CM9.0000000000001783
    [32] H. Park, K. N. Han, B. H. Choi, H. Yoon, H. J. An, J. S. Lee, et al., Ultra-low-dose intraoperative x-ray imager for minimally invasive surgery: a pilot imaging study, Trans. Lung Cancer Res., 11 (2022), 588–599. https://doi.org/10.21037/tlcr-21-909 doi: 10.21037/tlcr-21-909
    [33] S. Lim, C. Jun, D. Chang, D. Petrisor, M. Han, D. Stoianovici, Robotic transrectal ultrasound guided prostate biopsy, IEEE Transact. Biomed. Eng., 66 (2019), 2527–2537. https://doi.org/10.1109/TBME.2019.2891240 doi: 10.1109/TBME.2019.2891240
    [34] Y. Gao, X. Liu, X. Zhang, Z. Zhou, W. Jiang, L. Chen, et al., A dual-armed robotic puncture system: Design, implementation and preliminary tests, Electronics, 11 (2022), 740. https://doi.org/10.3390/electronics11050740 doi: 10.3390/electronics11050740
    [35] J. Tan, B. Li, Y. Li, B. Li, X. Chen, J. Wu, et al., A flexible and fully autonomous breast ultrasound scanning system, IEEE Transact. Autom. Sci. Eng.. https://doi.org/10.1109/TASE.2022.3189339
    [36] T. Lakhanpal, B. R. Mittal, R. Kumar, A. Watts, N. Rana, H. Singh, Radiation exposure to the personnel performing robotic arm-assisted positron emission tomography/computed tomography-guided biopsies, Indian J. Nucl. Med., 33 (2018), 209. https://doi.org/10.4103/ijnm.IJNM-31-18 doi: 10.4103/ijnm.IJNM-31-18
    [37] J. Ghelfi, A. Moreau-Gaudry, N. Hungr, C. Fouard, B. Veron, M. Medici, et al., Evaluation of the needle positioning accuracy of a light puncture robot under mri guidance: Results of a clinical trial on healthy volunteers, Cardiov. Int. Radiol., 41 (2018), 1428–1435. https://doi.org/10.1007/s00270-018-2001-5 doi: 10.1007/s00270-018-2001-5
    [38] M. Anvari, T. Chapman, K. Barlow, T. Cookson, C. Van Toen, T. Fielding, Clinical safety and efficacy of a fully automated robot for magnetic resonance imaging-guided breast biopsy, Int. J. Med. Robot. Comp., e2472. https://doi.org/10.1002/rcs.2472
    [39] C. Song, Z. Yang, S. Jiang, Z. Zhou, D. Zhang, An integrated navigation system based on a dedicated breast support device for mri-guided breast biopsy, Int. J. Comput. Assist Radiol. Surg., 17 (2022), 993–1005. https://doi.org/10.1007/s11548-022-02640-0 doi: 10.1007/s11548-022-02640-0
    [40] J. C. Vilanova, A. Pérez de Tudela, J. Puig, M. Hoogenboom, J. Barceló, M. Planas, et al., Robotic-assisted transrectal mri-guided biopsy. technical feasibility and role in the current diagnosis of prostate cancer: An initial single-center experience, Abdom Radio, 45 (2020), 4150–4159. https://doi.org/10.1007/s00261-020-02665-6 doi: 10.1007/s00261-020-02665-6
    [41] E. Ben-David, M. Shochat, I. Roth, I. Nissenbaum, J. Sosna, S. N. Goldberg, Evaluation of a ct-guided robotic system for precise percutaneous needle insertion, J. Vasc. Interv. Radiol., 29 (2018), 1440–1446. https://doi.org/10.1016/j.jvir.2018.01.002 doi: 10.1016/j.jvir.2018.01.002
    [42] A. Nagao, T. Matsuno, T. Kamegawa, T. Hiraki, Installation angle offset compensation of puncture robot based on measurement of needle by CT equipment, Int. J. Mechatron. Autom., 6 (2018), 190–200. https://doi.org/10.1109/ICMA.2017.8015859 doi: 10.1109/ICMA.2017.8015859
    [43] M. Kostrzewa, A. Rothfuss, T. Pätz, M. Kühne, S. O. Schoenberg, S. J. Diehl, et al., Robotic assistance system for cone-beam computed tomography-guided percutaneous needle placement, Cardiov. Int. Radiol., 45 (2022), 62–68. https://doi.org/10.1007/s00270-021-02938-7 doi: 10.1007/s00270-021-02938-7
    [44] X. Chen, Y. Yan, A. Li, T. Wang, Y. Wang, Robot-assisted needle insertion for ct-guided puncture: Experimental study with a phantom and animals, Cardiov. Int. Radiol., 1–8. https://doi.org/10.1007/s00270-022-03301-0
    [45] L. Lei, H. Tang, J. Zhang, Y. Wu, B. Zhao, Y. Hu, et al., Automatic registration and precise tumour localization method for robot-assisted puncture procedure under inconsistent breath-holding conditions, Int. J. Med. Robot., 17 (2021), e2319. https://doi.org/10.1002/rcs.2319 doi: 10.1002/rcs.2319
    [46] Y. Croissant, S. Zangos, M. H. Albrecht, K. Eichler, C. Schomerus, A. Spandorfer, et al., Robot-assisted percutaneous placement of k-wires during minimally invasive interventions of the spine, Minim Invas. Ther., 28 (2019), 373–380. https://doi.org/10.1080/13645706.2018.1544567 doi: 10.1080/13645706.2018.1544567
    [47] Z. Han, K. Yu, L. Hu, W. Li, H. Yang, M. Gan, et al., A targeting method for robot-assisted percutaneous needle placement under fluoroscopy guidance, Comput. Assist Surg., 24 (2019), 44–52. https://doi.org/10.1080/24699322.2018.1557907 doi: 10.1080/24699322.2018.1557907
    [48] S. Said, P. Clauser, N. Ruiter, P. Baltzer, T. Hopp, Image registration between mri and spot mammograms for x-ray guided stereotactic breast biopsy: Preliminary results, in Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 11598, SPIE, 2021,354–361. https://doi.org/10.1117/12.2581820
    [49] S. Said, P. Clauser, N. Ruiter, P. Baltzer, T. Hopp, Image based registration between full x-ray and spot mammograms for x-ray guided stereotactic breast biopsy, in Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 12034, SPIE, 2022,614–621. https://doi.org/10.1117/12.2611509
    [50] M. K. Welleweerd, D. Pantelis, A. G. de Groot, F. J. Siepel, S. Stramigioli, Robot-assisted ultrasound-guided biopsy on mr-detected breast lesions, in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, 2965–2971. https://doi.org/10.1109/IROS45743.2020.9341695
    [51] S. Xiao, C. Wang, Y. Shi, J. Yu, L. Xiong, C. Peng, et al., Visual optimization of ultrasound-guided robot-assisted procedures using variable impedance control, in 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA), IEEE, 2021,128–133. https://doi.org/10.1109/WRCSARA53879.2021.9612667
    [52] M. Schlüter, S. Gerlach, C. Fürweger, A. Schlaefer, Analysis and optimization of the robot setup for robotic-ultrasound-guided radiation therapy, Int. J. CARS., 14 (2019), 1379–1387. https://doi.org/10.1007/s11548-019-02009-w doi: 10.1007/s11548-019-02009-w
    [53] J. Berger, M. Unger, J. Keller, C. M. Reich, T. Neumuth, A. Melzer, Design and validation of a medical robotic device system to control two collaborative robots for ultrasound-guided needle insertions, Front. Robot. AI, 9 (2022), 875845. https://doi.org/10.3389/frobt.2022.875845 doi: 10.3389/frobt.2022.875845
    [54] M. Z. Mahmoud, M. Aslam, M. Alsaadi, M. A. Fagiri, B. Alonazi, Evolution of robot-assisted ultrasound-guided breast biopsy systems, J. Radiat. Res. Appl. Sc., 11 (2018), 89–97. https://doi.org/10.1016/j.jrras.2017.11.005 doi: 10.1016/j.jrras.2017.11.005
    [55] M. K. Welleweerd, F. J. Siepel, V. Groenhuis, J. Veltman, S. Stramigioli, Design of an end-effector for robot-assisted ultrasound-guided breast biopsies, Int. J. CARS., 15 (2020), 681–690. https://doi.org/10.1007/s11548-020-02122-1 doi: 10.1007/s11548-020-02122-1
    [56] A. Nath, A. Prashanth, H. Lal, S. Kumar, S. Barai, S. Gambhir, Robotic-assisted computed tomography-guided 18f-fdg pet/computed tomography-directed biopsy for diagnosis of intra thoracic lesions: An experience from a tertiary care centre in north India, Nucl. Med. Commun., 41 (2020), 246–251. https://doi.org/10.1097/MNM.0000000000001148 doi: 10.1097/MNM.0000000000001148
    [57] B. Mittal, R. Kumar, H. Singh, A. Watts, N. Rana, A. Bhattacharya, Robotic arm assisted real time ga-68 labelled tracer (dotanoc and psma) pet/ct guided percutaneous biopsies, J Nucl Med., 59 (2018). https://jnm.snmjournals.org/content/59/supplement-1/1494
    [58] R. Kumar, B. Mittal, A. Bhattacharya, S. Vadi, H. Singh, A. Bal, et al., Positron emission tomography/computed tomography guided percutaneous biopsies of ga-68 avid lesions using an automated robotic arm, Diagn. Interv. Imag., 101 (2020), 157–167. https://doi.org/10.1016/j.diii.2019.10.006 doi: 10.1016/j.diii.2019.10.006
    [59] K. Deva, N. Rana, R. Kumar, B. R. Mittal, Evaluation of radiation exposure to the patients undergoing positron emission tomography/computed tomography-guided biopsies, Indian J. Nucl. Med., 37 (2022), 23. https://doi.org/10.4103/ijnm.ijnm-112-21 doi: 10.4103/ijnm.ijnm-112-21
    [60] E. Mendoza, J. P. Whitney, A testbed for haptic and magnetic resonance imaging-guided percutaneous needle biopsy, IEEE Robot. Autom. Letters, 4 (2019), 3177–3183. https://doi.org/10.1109/LRA.2019.2925558 doi: 10.1109/LRA.2019.2925558
    [61] Z. He, Z. Dong, G. Fang, J. D.-L. Ho, C.-L. Cheung, H.-C. Chang, et al., Design of a percutaneous mri-guided needle robot with soft fluid-driven actuator, IEEE Robot. Autom. Letters, 5 (2020), 2100–2107. https://doi.org/10.1109/LRA.2020.2969929 doi: 10.1109/LRA.2020.2969929
    [62] N. A. Patel, G. Li, W. Shang, M. Wartenberg, T. Heffter, E. C. Burdette, et al., System integration and preliminary clinical evaluation of a robotic system for mri-guided transperineal prostate biopsy, J. Med. Robot. Res., 4 (2019), 1950001. https://doi.org/10.1142/S2424905X19500016 doi: 10.1142/S2424905X19500016
    [63] M. I. Patel, S. Muter, P. Vladica, D. Gillatt, Robotic-assisted magnetic resonance imaging ultrasound fusion results in higher significant cancer detection compared to cognitive prostate targeting in biopsy naive men, Transl. Androl. Urol., 9 (2020), 601. https://doi.org/10.21037/tau.2020.01.33 doi: 10.21037/tau.2020.01.33
    [64] M. Sandahl, K. J. Sandahl, E. Marinovskij, T. F. Nielsen, K. D. Sørensen, M. Borre, et al., Prostate cancer detection rate of manually operated and robot-assisted in-bore magnetic resonance imaging targeted biopsy, Eur. Urol., 41 (2022), 88–94. https://doi.org/10.1016/j.euros.2022.05.002 doi: 10.1016/j.euros.2022.05.002
    [65] M. Giannakou, C. Yiallouras, G. Menikou, C. Ioannides, C. Damianou, Mri-guided frameless biopsy robotic system with the inclusion of unfocused ultrasound transducer for brain cancer ablation, Int. J. Med. Robot., 15 (2019), e1951. https://doi.org/10.1002/rcs.1951 doi: 10.1002/rcs.1951
    [66] E. W. Johnston, N. Fotiadis, C. Cummings, J. Basso, T. Tyne, J. Lameijer, et al., Developing and testing a robotic mri/ct fusion biopsy technique using a purpose-built interventional phantom, Eur. Radiol. Exp., 6 (2022), 1–10. https://doi.org/10.1186/s41747-022-00308-7 doi: 10.1186/s41747-022-00308-7
    [67] W. Liu, Z. Yang, S. Jiang, D. Feng, D. Zhang, Design and implementation of a new cable-driven robot for mri-guided breast biopsy, Int. J. Med. Robot. Comp., 16 (2020), e2063. https://doi.org/10.1002/rcs.2063 doi: 10.1002/rcs.2063
    [68] G. P. Ghantasala, N. V. Kumari, Breast cancer treatment using automated robot support technology for mri breast biopsy, Int. J. Educ. Soc. Sci. Linguist., 1 (2021), 235–242. http://internationaljournal.unigha.ac.id/index.php/IJESLi/article/view/63
    [69] P. Moreira, N. Patel, M. Wartenberg, G. Li, K. Tuncali, T. Heffter, et al., Evaluation of robot-assisted mri-guided prostate biopsy: needle path analysis during clinical trials, Phys. Med. Biol., 63 (2018), 20NT02. https://doi.org/10.1088/1361-6560/aae214 doi: 10.1088/1361-6560/aae214
    [70] W. K. Ma, B. S. Ho, A. S. Lai, K. C. Lam, Y. S. Chan, L. K. Yip, et al., Multiparametric magnetic resonance imaging/transrectal ultrasound fusion prostate biopsy with semi-robotic navigation in the chinese population: Initial results, Asian J. Androl., 20 (2018), 93. https://doi.org/10.4103/1008-682X.196855 doi: 10.4103/1008-682X.196855
    [71] M. Barral, A. Lefevre, P. Camparo, M. Hoogenboom, T. Pierre, P. Soyer, et al., In-bore transrectal mri–guided biopsy with robotic assistance in the diagnosis of prostate cancer: An analysis of 57 patients, AJR Am. J. Roentgenol., 213 (2019), W171–W179. https://doi.org/10.2214/AJR.19.21145 doi: 10.2214/AJR.19.21145
    [72] A. Smakic, N. Rathmann, M. Kostrzewa, S. O. Schönberg, C. Weiß, S. J. Diehl, Performance of a robotic assistance device in computed tomography-guided percutaneous diagnostic and therapeutic procedures, Cardiov, Int, Radiol., 41 (2018), 639–644. https://doi.org/10.1007/s00270-017-1841-8 doi: 10.1007/s00270-017-1841-8
    [73] S. Levy, S. N. Goldberg, I. Roth, M. Shochat, J. Sosna, I. Leichter, et al., Clinical evaluation of a robotic system for precise ct-guided percutaneous procedures, Abdom Radiol., 46 (2021), 5007–5016. https://doi.org/10.1007/s00261-021-03175-9 doi: 10.1007/s00261-021-03175-9
    [74] T. de Baere, C. Roux, G. Noel, A. Delpla, F. Deschamps, E. Varin, et al., Robotic assistance for percutaneous needle insertion in the kidney: Preclinical proof on a swine animal model, Eur. Radiol. Exp., 6 (2022), 1–7. https://doi.org/10.1186/s41747-022-00265-1 doi: 10.1186/s41747-022-00265-1
    [75] Y. Takahashi, K. Izumi, R. Saito, I. Ikeda, R. Tsumura, H. Iwata, Development of needle guide unit considering buckling bone-perforation control strategy based on computed tomography-guided needle insertion robot, in Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2022, 4391–4396. https://doi.org/10.1109/EMBC48229.2022.9871709
    [76] T. Hiraki, T. Kamegawa, T. Matsuno, J. Sakurai, T. Komaki, T. Yamaguchi, et al., Robotic needle insertion during computed tomography fluoroscopy–guided biopsy: Prospective first-in-human feasibility trial, Eur. Radiol., 30 (2020), 927–933. https://doi.org/10.1007/s00330-019-06409-z doi: 10.1007/s00330-019-06409-z
    [77] T.-F. Zhang, Z. Fu, Y. Wang, W.-Y. Shi, G.-B. Chen, d J. Fei, Lesion positioning method of a ct-guided surgical robotic system for minimally invasive percutaneous lung, Int. J. Med. Robot., 16 (2020), e2044. https://doi.org/10.1002/rcs.2044 doi: 10.1002/rcs.2044
    [78] L. Wei, S. Jiang, Z. Yang, G. Zhang, L. Ma, A ct-guided robotic needle puncture method for lung tumours with respiratory motion, Phys. Med., 73 (2020), 48–56. https://doi.org/10.1016/j.ejmp.2020.04.003 doi: 10.1016/j.ejmp.2020.04.003
    [79] K. Y. Fong, A. S. M. Tan, M. S. B. Sulaiman, S. H. Leong, K. W. Ng, C. W. Too, Phantom and animal study of a robot-assisted, ct-guided targeting system using image-only navigation for stereotactic needle insertion without positional sensors, J. Vasc. Int. Radiol., 33 (2022), 1416–1423. https://doi.org/10.1016/j.jvir.2022.08.005 doi: 10.1016/j.jvir.2022.08.005
    [80] B. Guiu, T. De Baère, G. Noel, M. Ronot, Feasibility, safety and accuracy of a ct-guided robotic assistance for percutaneous needle placement in a swine liver model, Sci. Rep., 11 (2021), 1–11. https://doi.org/10.1038/s41598-021-84878-3 doi: 10.1038/s41598-021-84878-3
    [81] T. de Baère, C. Roux, F. Deschamps, L. Tselikas, B. Guiu, Evaluation of a new ct-guided robotic system for percutaneous needle insertion for thermal ablation of liver tumors: A prospective pilot study, Cardiov. Int. Radiol., 45 (2022), 1701–1709. https://doi.org/10.1007/s00270-022-03267-z doi: 10.1007/s00270-022-03267-z
    [82] W. J. Heerink, S. J. Ruiter, J. P. Pennings, B. Lansdorp, R. Vliegenthart, M. Oudkerk, et al., Robotic versus freehand needle positioning in ct-guided ablation of liver tumors: a randomized controlled trial, Radiology, 290 (2019), 826–832. https://doi.org/10.1148/radiol.2018181698 doi: 10.1148/radiol.2018181698
    [83] T. Hiraki, T. Matsuno, T. Kamegawa, T. Komaki, J. Sakurai, R. Matsuura, et al., Robotic insertion of various ablation needles under computed tomography guidance: Accuracy in animal experiments, Eur. J. Radiol., 105 (2018), 162–167. https://doi.org/10.1016/j.ejrad.2018.06.006 doi: 10.1016/j.ejrad.2018.06.006
    [84] I. Burovik, G. Prohorov, P. Lushina, A. Vasiliev, E. Degtiareva, Ct-guided robotic-assisted percutaneous interventions: first experience, Med. Visualiz., 27–35. https://doi.org/10.24835/1607-0763-2019-2-27-35
    [85] R. Kumar, B. R. Mittal, A. Bhattacharya, H. Singh, A. Bal, S. K. Vadi, et al., Diagnostic performance of real-time robotic arm-assisted 18f-fdg pet/ct-guided percutaneous biopsy in metabolically active abdominal and pelvic lesions, Eur. J. Nucl. Med. Mol. Imaging., 46 (2019), 838–847. https://doi.org/10.1007/s00259-018-4133-x doi: 10.1007/s00259-018-4133-x
    [86] L. Deboeuf, A. Moiraghi, C. Debacker, S. M. Peeters, G. A. Simboli, A. Roux, et al., Feasibility and accuracy of robot-assisted, stereotactic biopsy using 3-dimensional intraoperative imaging and frameless registration tool, Neurosurgery, (2022). https://doi.org/10.1227/neu.0000000000002294 doi: 10.1227/neu.0000000000002294
    [87] H. Qiao, S. Zhong, Z. Chen, H. Wang, Improving performance of robots using human-inspired approaches: a survey, Sci. China Inf. Sci., 65 (2022), 1–31. https://doi.org/10.1007/s11432-022-3606-1 doi: 10.1007/s11432-022-3606-1
    [88] E. Checcucci, D. Amparore, G. Volpi, F. Piramide, S. De Cillis, A. Piana, et al., Percutaneous puncture during pcnl: New perspective for the future with virtual imaging guidance, World J. Urol., 40 (2022), 639–650. https://doi.org/10.1007/s00345-021-03820-4 doi: 10.1007/s00345-021-03820-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2848) PDF downloads(320) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog