Research article Special Issues

Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order

  • Received: 22 August 2023 Revised: 05 December 2023 Accepted: 06 December 2023 Published: 18 December 2023
  • In this paper, we study the existence and stability of solutions in connection to a non-local multiterm boundary value problem (BVP) with differential equations equipped with the Riemann-Liouville (RL) fractional derivative in the sense of Atangana-Baleanu of variable-order. The results about the existence property are investigated and proved via Krasnoselskii's fixed point theorem. Note that all theorems in the present research are studied based on piece-wise constant functions defined on generalized intervals. We shall convert our main BVP with the RL-fractional derivative of the Atangana-Baleanu type of variable-order to an equivalent BVP of constant order of the RL-Atangana-Baleanu derivative. In the next step, we examine the Ulam-Hyers stability for the supposed variable-order RL-Atangana-Baleanu BVP. Finally, we provide some examples to validate that our results are applicable.

    Citation: Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour. Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order[J]. Electronic Research Archive, 2024, 32(1): 134-159. doi: 10.3934/era.2024007

    Related Papers:

  • In this paper, we study the existence and stability of solutions in connection to a non-local multiterm boundary value problem (BVP) with differential equations equipped with the Riemann-Liouville (RL) fractional derivative in the sense of Atangana-Baleanu of variable-order. The results about the existence property are investigated and proved via Krasnoselskii's fixed point theorem. Note that all theorems in the present research are studied based on piece-wise constant functions defined on generalized intervals. We shall convert our main BVP with the RL-fractional derivative of the Atangana-Baleanu type of variable-order to an equivalent BVP of constant order of the RL-Atangana-Baleanu derivative. In the next step, we examine the Ulam-Hyers stability for the supposed variable-order RL-Atangana-Baleanu BVP. Finally, we provide some examples to validate that our results are applicable.



    加载中


    [1] A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique, Adv. Differ. Equations, 2021 (2021), 365. https://doi.org/10.1186/s13662-021-03520-8 doi: 10.1186/s13662-021-03520-8
    [2] A. Benkerrouche, M. S. Souid, E. Karapinar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Methods Appl. Sci., 46 (2023), 3187–3203. https://doi.org/10.1002/mma.8306 doi: 10.1002/mma.8306
    [3] S. Hristova, A. Benkerrouche, M. S. Souid, A. Hakem, Boundary value problems of Hadamard fractional differential equations of variable order, Symmetry, 13 (2021), 896. https://doi.org/10.3390/sym13050896 doi: 10.3390/sym13050896
    [4] S. Rezapour, Z. Bouazza, M. S. Souid, S. Etemad, M. K. A. Kaabar, Darbo fixed point criterion on solutions of a Hadamard nonlinear variable order problem and Ulam-Hyers-Rassias stability, J. Funct. Spaces, 2022 (2022), 1769359. https://doi.org/10.1155/2022/1769359 doi: 10.1155/2022/1769359
    [5] S. Rezapour, M. S. Souid, S. Etemad, Z. Bouazza, S. K. Ntouyas, S. Asawasamrit, et al., Mawhin's continuation technique for a nonlinear BVP of variable order at resonance via piece-wise constant functions, Fractal Fract., 5 (2021), 216. https://doi.org/10.3390/fractalfract5040216 doi: 10.3390/fractalfract5040216
    [6] X. Li, Y. Gao, B. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285–2294. https://doi.org/10.3934/math.2020151 doi: 10.3934/math.2020151
    [7] R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: A change of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904
    [8] D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [9] R. Amin, K. Shah, H. Ahmad, A. H. Ganie, A. H. Abdel-Aty, T. Botmart, Haar wavelet method for solution of variable order linear fractional integro-differential equation, AIMS Math., 7 (2022), 5431–5443. https://doi.org/10.3934/math.2022301 doi: 10.3934/math.2022301
    [10] M. K. A. Kaabar, A. Refice, M. S. Souid, F. Martinez, S. Etemad, Z. Siri, S. Rezapour, Existence and U-H-R stability of solutions to the implicit nonlinear FBVP in the variable order settings, Mathematics, 9 (2021), 1693. https://doi.org/10.3390/math9141693 doi: 10.3390/math9141693
    [11] Z. Bouazza, S. Etemad, M. S. Souid, S. Rezapour, F. Martinez, M. K. A. Kaabar, A study on the solutions of a multiterm FBVP of variable order, J. Funct. Spaces, 2021 (2021), 9939147. https://doi.org/10.1155/2021/9939147 doi: 10.1155/2021/9939147
    [12] M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integrodifferential equations with a variable order under the Mittag-Leffler power law, J. Funct. Spaces, 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351
    [13] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [14] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [15] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
    [16] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [17] T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9 doi: 10.1016/S0893-9659(97)00138-9
    [18] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [19] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62 (2017), 27–38.
    [20] A. Fernandez, D. Baleanu, Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, in Proceedings of International Conference on Fractional Differintegration and its Applications (ICFDA), 2018.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(766) PDF downloads(63) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog