In this paper, we study the existence and stability of solutions in connection to a non-local multiterm boundary value problem (BVP) with differential equations equipped with the Riemann-Liouville (RL) fractional derivative in the sense of Atangana-Baleanu of variable-order. The results about the existence property are investigated and proved via Krasnoselskii's fixed point theorem. Note that all theorems in the present research are studied based on piece-wise constant functions defined on generalized intervals. We shall convert our main BVP with the RL-fractional derivative of the Atangana-Baleanu type of variable-order to an equivalent BVP of constant order of the RL-Atangana-Baleanu derivative. In the next step, we examine the Ulam-Hyers stability for the supposed variable-order RL-Atangana-Baleanu BVP. Finally, we provide some examples to validate that our results are applicable.
Citation: Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour. Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order[J]. Electronic Research Archive, 2024, 32(1): 134-159. doi: 10.3934/era.2024007
In this paper, we study the existence and stability of solutions in connection to a non-local multiterm boundary value problem (BVP) with differential equations equipped with the Riemann-Liouville (RL) fractional derivative in the sense of Atangana-Baleanu of variable-order. The results about the existence property are investigated and proved via Krasnoselskii's fixed point theorem. Note that all theorems in the present research are studied based on piece-wise constant functions defined on generalized intervals. We shall convert our main BVP with the RL-fractional derivative of the Atangana-Baleanu type of variable-order to an equivalent BVP of constant order of the RL-Atangana-Baleanu derivative. In the next step, we examine the Ulam-Hyers stability for the supposed variable-order RL-Atangana-Baleanu BVP. Finally, we provide some examples to validate that our results are applicable.
[1] | A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique, Adv. Differ. Equations, 2021 (2021), 365. https://doi.org/10.1186/s13662-021-03520-8 doi: 10.1186/s13662-021-03520-8 |
[2] | A. Benkerrouche, M. S. Souid, E. Karapinar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Methods Appl. Sci., 46 (2023), 3187–3203. https://doi.org/10.1002/mma.8306 doi: 10.1002/mma.8306 |
[3] | S. Hristova, A. Benkerrouche, M. S. Souid, A. Hakem, Boundary value problems of Hadamard fractional differential equations of variable order, Symmetry, 13 (2021), 896. https://doi.org/10.3390/sym13050896 doi: 10.3390/sym13050896 |
[4] | S. Rezapour, Z. Bouazza, M. S. Souid, S. Etemad, M. K. A. Kaabar, Darbo fixed point criterion on solutions of a Hadamard nonlinear variable order problem and Ulam-Hyers-Rassias stability, J. Funct. Spaces, 2022 (2022), 1769359. https://doi.org/10.1155/2022/1769359 doi: 10.1155/2022/1769359 |
[5] | S. Rezapour, M. S. Souid, S. Etemad, Z. Bouazza, S. K. Ntouyas, S. Asawasamrit, et al., Mawhin's continuation technique for a nonlinear BVP of variable order at resonance via piece-wise constant functions, Fractal Fract., 5 (2021), 216. https://doi.org/10.3390/fractalfract5040216 doi: 10.3390/fractalfract5040216 |
[6] | X. Li, Y. Gao, B. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285–2294. https://doi.org/10.3934/math.2020151 doi: 10.3934/math.2020151 |
[7] | R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: A change of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904 |
[8] | D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027 |
[9] | R. Amin, K. Shah, H. Ahmad, A. H. Ganie, A. H. Abdel-Aty, T. Botmart, Haar wavelet method for solution of variable order linear fractional integro-differential equation, AIMS Math., 7 (2022), 5431–5443. https://doi.org/10.3934/math.2022301 doi: 10.3934/math.2022301 |
[10] | M. K. A. Kaabar, A. Refice, M. S. Souid, F. Martinez, S. Etemad, Z. Siri, S. Rezapour, Existence and U-H-R stability of solutions to the implicit nonlinear FBVP in the variable order settings, Mathematics, 9 (2021), 1693. https://doi.org/10.3390/math9141693 doi: 10.3390/math9141693 |
[11] | Z. Bouazza, S. Etemad, M. S. Souid, S. Rezapour, F. Martinez, M. K. A. Kaabar, A study on the solutions of a multiterm FBVP of variable order, J. Funct. Spaces, 2021 (2021), 9939147. https://doi.org/10.1155/2021/9939147 doi: 10.1155/2021/9939147 |
[12] | M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integrodifferential equations with a variable order under the Mittag-Leffler power law, J. Funct. Spaces, 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351 |
[13] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[14] | T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5 |
[15] | D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003 |
[16] | A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[17] | T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9 doi: 10.1016/S0893-9659(97)00138-9 |
[18] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[19] | M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62 (2017), 27–38. |
[20] | A. Fernandez, D. Baleanu, Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, in Proceedings of International Conference on Fractional Differintegration and its Applications (ICFDA), 2018. |