In this study, we introduce the extended incomplete versions of the Riemann-Liouville (R-L) fractional integral operators and investigate their analytical properties rigorously. More precisely, we investigate their transformation properties in $ L_{1} $ and $ L_{\infty} $ spaces, and we observe that the extended incomplete fractional calculus operators can be used in the analysis of a wider class of functions than the extended fractional calculus operator. Moreover, by considering the concept of analytical continuation, definitions for extended incomplete R-L fractional derivatives are given and therefore the full fractional calculus model has been completed for each complex order. Then the extended incomplete $ \tau $-Gauss, confluent and Appell's hypergeometric functions are introduced by means of the extended incomplete beta functions and some of their properties such as integral representations and their relations with the extended R-L fractional calculus has been given. As a particular advantage of the new fractional integral operators, some generating relations of linear and bilinear type for extended incomplete $ \tau $-hypergeometric functions have been derived.
Citation: Mehmet Ali Özarslan, Ceren Ustaoğlu. Extended incomplete Riemann-Liouville fractional integral operators and related special functions[J]. Electronic Research Archive, 2022, 30(5): 1723-1747. doi: 10.3934/era.2022087
In this study, we introduce the extended incomplete versions of the Riemann-Liouville (R-L) fractional integral operators and investigate their analytical properties rigorously. More precisely, we investigate their transformation properties in $ L_{1} $ and $ L_{\infty} $ spaces, and we observe that the extended incomplete fractional calculus operators can be used in the analysis of a wider class of functions than the extended fractional calculus operator. Moreover, by considering the concept of analytical continuation, definitions for extended incomplete R-L fractional derivatives are given and therefore the full fractional calculus model has been completed for each complex order. Then the extended incomplete $ \tau $-Gauss, confluent and Appell's hypergeometric functions are introduced by means of the extended incomplete beta functions and some of their properties such as integral representations and their relations with the extended R-L fractional calculus has been given. As a particular advantage of the new fractional integral operators, some generating relations of linear and bilinear type for extended incomplete $ \tau $-hypergeometric functions have been derived.
[1] | P. Agarwal, J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soci., 53 (2016), 1183–1210. https://doi.org/10.4134/JKMS.j150458 doi: 10.4134/JKMS.j150458 |
[2] | A. Çetinkaya, A comperative study on generating function relations for generalized hypergeometric functions via generalized fractional operators, Adv. Differ. Equations 2018, 156 (2018). https://doi.org/10.1186/s13662-018-1612-0 |
[3] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779 |
[4] | R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut, 2006. |
[5] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. https://doi.org/10.1142/p614 |
[6] | R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., 243 (2014), 132–137. https://doi.org/10.1016/j.amc.2014.05.074 doi: 10.1016/j.amc.2014.05.074 |
[7] | R. Srivastava, N. E. Cho, Generating functions for a certain class of hypergeometric polynomials, Appl. Math. Comput., 219 (2012), 3219–3225. https://doi.org/10.1016/j.amc.2012.09.059 doi: 10.1016/j.amc.2012.09.059 |
[8] | H. M. Srivastava, R. K. Parmar, P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms, 1 (2012), 238–258. https://doi.org/10.3390/axioms1030238 doi: 10.3390/axioms1030238 |
[9] | H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press, New York, 1984. |
[10] | H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019 |
[11] | M. A. Özarslan, E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Model., 52 (2010), 1825–1833. https://doi.org/10.1016/j.mcm.2010.07.011 doi: 10.1016/j.mcm.2010.07.011 |
[12] | M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78 (2014), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1 doi: 10.1016/S0377-0427(96)00102-1 |
[13] | M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589–602. https://doi.org/10.1016/j.amc.2003.09.017 doi: 10.1016/j.amc.2003.09.017 |
[14] | M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, USA, 2002. https://doi.org/10.1201/9781420036046 |
[15] | M. A. Özarslan, C. Ustaoğlu, Some incomplete hypergeometric functions and incomplete Riemann–Liouville fractional integral operators, Mathematics, 7 (2019), 483. https://doi.org/10.3390/math7050483 doi: 10.3390/math7050483 |
[16] | M. A. Özarslan, C. Ustaoğlu, Incomplete Caputo fractional derivative operators, Adv. Differ. Equations, 1 (2018), 209. https://doi.org/10.1186/s13662-018-1656-1 |
[17] | A. Fernandez, C. Ustaoğlu, M. A. Özarslan, On the analytical development of incomplete Riemann–Liouville fractional calculus, Turkish J. Math., 45 (2021), 1418–1443. https://doi.org/10.3906/mat-2101-64 doi: 10.3906/mat-2101-64 |
[18] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformation, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[19] | A. Çetinkaya, The incomplete second Appell hypergeometric functions, Appl. Math. Comput., 219 (2013), 8332–8337. https://doi.org/10.1016/j.amc.2012.11.050 doi: 10.1016/j.amc.2012.11.050 |
[20] | S. A. Dar, R. B. Paris, A (p, q)- extension of Srivastava's triple hypergeometric function $H_{B}$ and its properties, J. Comput. Appl. Math., 348 (2019), 237–245. https://doi.org/10.1016/j.cam.2018.08.045 doi: 10.1016/j.cam.2018.08.045 |
[21] | S. D. Lin, H. M. Srivastava, M. M. Wong, Some applications of Srivastava's theorem involving a certain family of generalized and extended hypergeometric polynomials, Filomat, 29 (2015), 1811–1819. https://doi.org/10.2298/FIL1508811L doi: 10.2298/FIL1508811L |
[22] | M. A. Özarslan, C. Ustaoğlu, Extension of incomplete gamma, beta and hypergeometric functions. Prog. Fractional Differ. Appl., 5 (2019), 1–15. https://doi.org/10.18576/pfda/050101 |
[23] | E. Özergin, M. A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math., 235 (2011), 4601–4610. https://doi.org/10.1016/j.cam.2010.04.019 |
[24] | E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971. |
[25] | R. Srivastava, Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inform. Sci., 7 (2013), 2195–2206. https://doi.org/10.12785/amis/070609 doi: 10.12785/amis/070609 |
[26] | R. Srivastava, N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. and Comput., 234 (2014), 277–285. https://doi.org/10.1016/j.amc.2014.02.036 doi: 10.1016/j.amc.2014.02.036 |
[27] | H. M. Srivastava, M. A. Chaudry, R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integr. Transf. Spec. Funct., 23 (2012), 659–683. https://doi.org/10.1080/10652469.2011.623350 doi: 10.1080/10652469.2011.623350 |
[28] | H. M. Srivastava, A. Çetinkaya, O. I. Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484–491. https://doi.org/10.1016/j.amc.2013.10.032 doi: 10.1016/j.amc.2013.10.032 |
[29] | H. M. Srivastava, A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, Symmetry, 13 (2021), 1–22. https://doi.org/10.3390/sym13122294 doi: 10.3390/sym13122294 |
[30] | H. M. Srivastava, An introductory overview of fractional calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. https://doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340 |
[31] | S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859–5883. https://doi.org/10.3934/math.2020375 doi: 10.3934/math.2020375 |
[32] | N. M. Temme, Incomplete Laplace integrals: Uniform asymptotic expansion with application to the incomplete beta function, SIAM J. Math. Anal., 18 (1987), 1637–1663. https://doi.org/10.1137/0518118 doi: 10.1137/0518118 |