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Abstract: In this study, we introduce the extended incomplete versions of the Riemann-Liouville (R-
L) fractional integral operators and investigate their analytical properties rigorously. More precisely,
we investigate their transformation properties in L; and L, spaces, and we observe that the extended
incomplete fractional calculus operators can be used in the analysis of a wider class of functions than
the extended fractional calculus operator. Moreover, by considering the concept of analytical contin-
uation, definitions for extended incomplete R-L fractional derivatives are given and therefore the full
fractional calculus model has been completed for each complex order. Then the extended incomplete
7-Gauss, confluent and Appell’s hypergeometric functions are introduced by means of the extended in-
complete beta functions and some of their properties such as integral representations and their relations
with the extended R-L fractional calculus has been given. As a particular advantage of the new frac-
tional integral operators, some generating relations of linear and bilinear type for extended incomplete
7-hypergeometric functions have been derived.
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1. Introduction

There is a close relationship between the special functions and fractional calculus, which is a branch
gaining popularity, especially in the last decades, because of its potential usefulness in real world appli-
cations (see [1-10]). Different definitions of fractional calculus have been introduced in the literature,
each of which has their own advantages or disadvantages. One direction of research has been to add
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more parameters, for instance the Erdelyi-Kober fractional model, and another direction is to consider
some analytic functions in the kernel of fractional calculus operators such as the Prabhakar model.
Recently, the extended R-L fractional integral of order u [11] was defined by

2

D (f(2)) = %_ﬂ) fo )z — exp( Pz )dt, Re(u) <0, Re(p) > 0,

Hz—1)

and it has been shown that these operators are useful in the analysis of certain extensions of special
functions defined in [12-14].

Another interesting approach in generalizing fractional calculus is given in the papers [15, 16],
where the authors, instead of integrating over a full interval [0, z], introduced two integral operators
by separeting the interval by a variable yz (0 < y < 1), therefore this approach provides a general
definition of fractional integrals, in which the singular and nonsingular parts of the integral can be
separated. More precisely they introduced the operators

- y
D@ = s fo Fw2)(1 =" du, Re(u) <0 (L1)
and » |
DAS@ = foes f FwD) (1 = uwy ™ du, Re(u) <0. (12)
y

The incomplete fractional integrals and derivatives have been subjected to an in-depth analysis in
the papers [15-18].

On the other hand, in recent papers such as [11-14, 19-28], several extensions of the well-known
special functions have been considered, many of which have close relationships with fractional cal-
culus. Also we should refer the recent surveys on the transcendental functions with their connections
between the fractional calculus [29, 30].

Very recently, in order to introduce a different variant of incomplete Gauss hypergeometric functions
which is more suitable for the fractional calculus results as well, the authors introduced the incomplete
Pochhammer ratios as follows [15]:

B,(b+n,c—b)
b, c; =
[ 9 y]n B(C _ b, b)
and Bi(c—b.b+n)
1y(€C—0,b+n
b,c;y}, =
b,y B(c—b,b)
where 0 <y <1 and
"y
By(x,7) = f (1 —1)"'dt, Re(x) > 0,Re(z) >0, 0 <y < 1. (1.3)
0

is the incomplete beta function.
They defined the incomplete Gauss hypergeometric functions as follows:

b n

Fi(@ [beiyli) = ) (@b iyl (1.4)

n=0
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and

2Fi(a, (b, ¢; )3 %) = Z(a)n (b.c:y), . (1.5)

n=0

Several properties of these functions were obtained, such as integral representations, derivative
formulae, transformation formulae, and recurrence relations. Also, the incomplete Appell’s functions
were defined and expressed using integral representations. It should be mentioned that, in a recent
paper, the incomplete Gauss hypergeometric function was used in the derivation of some new estimates
for the generalized Simpson’s quadrature rule [31].

One of the generalisation of Gauss hypergeometric function was defined by Chaudhry [13, 14]

= b -b
Fy(a,bic;2) = ;(a) ”I(B(Z:Z_C 5 )fl  p>0, Re(c) > Re(b) > 0 (1.6)
where
B,(x,y) —f ) 1exp[ - )]dt Re(p) > 0, Re(x) > 0, Re(y) > 0. (1.7)

is the extended beta function. On the other hand, the incomplete version of the extended beta function
has been defined as

;
By(x,z;p)=f (1 = T 1exp( )dt Re(p) >0, 0<y< 1 (1.8)
0

Hl-1

and investigated in [14]. Some applications, where these functions are used, can be found in [14].

We saw from the above discussion that both structures of generalisations by adding new param-
eters or incomplitifications are interesting topics of study with potential real world applications. By
combining both forms of generalisations, we are able to construct new functions and operators which
have the advantages of both the incomplete versions and the parametric versions. Therefore in this
paper, in Sections 2 and 3 we combine these generalisations and investigate them thoroughly. More
precisely in Section 2, we introduce the extended incomplete versions of the Riemann-Liouville (R-L)
fractional integral operator and investigate their transformation properties in L; and L., spaces. We
observe that the extended incomplete fractional calculus operators can be used in the analysis of a
wider class of functions than the extended fractional calculus operator. Moreover, by considering the
concept of analytical continuation, definitions for extended incomplete R-L fractional derivatives are
given and therefore the full fractional calculus model has been completed for each complex order. In
Section 3, similar treatment has been considered to introduce extended incomplete 7-Gauss, confluent
and Appell’s hypergeometric functions. Some of their properties such as integral representations and
their relations with the extended R-L fractional calculus has been given. In the last section, one partic-
ular advantage of the new fractional integral operators has been exhibited by deriving some generating
relations of linear and bilinear type for extended incomplete 7-hypergeometric functions.
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2. Extended incomplete R-L fractional integral operator

The extended incomplete R-L fractional integral operators D.” [ f(z); y] and D% {f(z); y} are intro-
duced by

ff(uz)(l—u)“ 1exp( 0 ))du Re(u) <0, Re(p) >0,0<y<1,
2.1)

DEP [ f(2);y] = =

and

DEPf(2)s 9} =

exp( 1= ))du Re(u) <0, Re(p) >0,0<y< 1.

(2.2)

Setting p — 01in (2.1) and (2.2), we obtain the incomplete R-L fractional integral operators which

are defined in (1.1) and (1.2), respectively. These extended incomplete R-L fractional integral operators
satisfy the following decomposition formula:

DEP [ f(2); y] + DEP{f(2): v} = DEP (f(2)).

We start the analytical investigation of these operators by considering their transformation proper-
ties:

Theorem 2.1. Let A > 0, 0 <y < 1 and Re(u) > 0. Then D;*" [-;y] : L, [0,yA] — L, [0,A].

D#P
| f(Z)y|‘|r(u>|f 1z —1)

o) Re (p) 22 1 f”
_ \Re(w-1
S_[S()l,lylz)](z y) eXp( =1 )IF(u)I ; |f ()] dt
- | . )
_[%ilz](z— mfo |f(®)|dt

_yr)Re(w)-1
{(Z 9 Al o] 0 < Re(o) < 1

Proof. Fix 0 <y < 1 choose any f € L; [0, yA] .For z € [0, A], since Re(p) > 0, we can write
—pz’
fo@E - exp( ) dt

f)Reto-1

IA

Re(u)-1

RO E Re(uw) > 1.

Integrating both sides of this inequality over z € [0, A], we get

(1 _y)RE(ﬂ)f 1 gRe(w)
roore M llfoya)> O <Re(u) <1

o il < | T
o [C(u)Re(u) AL, [0y4] > Re(u) > 1.

Thus the proof is completed. O

Theorem 2.2. Let A > 0, 0 <y < 1 and Re(u) > 1. Then D.**" {-;y} : L; [0,A] — L, [0,A].
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Proof. Fix 0 <y < 1 choose any f € L, [0,A]. For z € [0,A], since Re(p) > 0 we have

D7 {
| f(z”|‘|r<u>|f

H—l Z2
— d
FO@ 1) ep(( _t)) t

s [(~Rem2\| 1 f

_ ARe(o-1

JpED eXp( -1 ) T J, /O
R

< % T

Integrating both sides of this inequality over z € [0, A], we get
(1- y)Re(#)—l ARe(w)
<
Mo = = aiReGa

Whence the result. O

||Dz_”’p {f 112, 10,41 -

Therefore, using the above two Theorems, we can give the following definitions.

Definition 2.3. Let A > 0, 0 < y < 1 and Re(u) > 0. Then for all f € L; [0, yA] the u th order extended
incomplete lower fractional integral is defined by

1 14
r(u)ff(”le_”)“ exp( (l—u))

Definition 2.4. Let A > 0, 0 <y < 1 and Re(u) > 1. Then for all f € L, [0, A] the u th order extended
incomplete upper fractional integral is defined by

o7 [f(2); y]

1
ol P{f(2); ¥} = f fuz)(1 —uy™*! eXp(
y

Z 4
T (1) u(l —u))d”

There is a gap in the definition of the extended incomplete upper fractional integral for the case
0 < Re(u) < 1. In order to fill this gap, in the following theorem, we consider the operators in the space
L.

Theorem 2.5. Let A > 0, 0 <y < 1 and Re(u) > 0. Then we have
D" [5y] : Lo [0,yA] = Lo [0,A]

and
D*P{-;y} 1 Lo [0,A] — Lo [0,A].

Proof. For any z € [0, A], since Re(p) > 0, we have
(z -1 exp( ) dt

» ) 1 <
DI @] € z NG N
zy

es sup lfl | (z=o0Re+dr
IF(u)l [004] o
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ARen (1 (1 _y)Rep)
<
Re p|I" ()l

Taking essup over all z € [0,A] on both sides of the inequality, we complete the proof of the first
statement.
Since Re(p) > 0, we have for any x € [0, A] that
-pz’
(z -0 1exp( ) dt

D7 {
| ﬂ@”—ww»f”@' =

1
< es sup |f] (z HRer=lgy
|F (,u)| [0.v4] 2y
AR =yt
Re u I ()l

Taking essup over all z € [0, A] on both sides of the inequality, we complete the proof of the second
statement. O

1041 -

||f|le[0,A] .

Using the above Theorem, in the following we give definition of the u th order extended incomplete
upper fractional integrals for the case 0 < Re(u) < 1.

Definition 2.6. Let A > 0, 0 <y < 1 and 0 < Re(u) < 1. Then for all f € L. [0,A], the u th order
extended incomplete upper fractional integral is defined by

1 —-P
F(u)f fluz)(1 —u)™~ exp( a _u))du

Remark 2.7. It should be remarked that the transformation properties of

_ | p7
D7 (f(2) = Iﬁ(,u)ff(f)(z— e exp(( t))

has not been investigated and it can be easily proved by majorizing the exponential term that D;*" (-)
L [0,A] = L;[0,A] and D;*" (-) : Lo [0,A] — L [0,A] for Re(u) > 0. Therefore it is clear that
the extended incomplete fractional calculus operators can be used in the analysis of a wider class of
functions than the extended fractional calculus operator D"

ol f(2); v}

The extended incomplete R-L fractional integral operators D" [f(z);y] and D;*"{f(z);y} are
defined in the case Re(u) > 0. In order to extend the domain of u to Re(u) < 0, and by this way
defining the corresponding derivative operators, we consider the concept of analytic continuation in .
The following theorems will be crucial in this respect.

Theorem 2.8. Let A > 0,0 <y < 1,Re(u) > 2. Forall f,77' f € L, [0,yA], we have

V@)~ 2P exp (s )
T
o

TU-Hw-2)

+ DI £(2); y]

%Uﬁwvwmn=

DI *P[f(2);y]
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P LDl fan ).

Forall f,77' f € L [0,A], we have

=yf(@y)(z = 2y}~  exp (y&fy)) + D PP (£(2): y)

d% (D771 £ (2 3}) =

[ (w)
y 24 -
D 14 :
+(/-l_1)(/-l 2) Z {f(z) y}
- L _pler 12y,
u—1

Proof. Firstly, using the usual technique of differentiation under the integral sign, we have

L (D [fy) = f FOG -1y lexp( 2)
dz d F(u) Hz—1)

U— 1
F('u)[y(z ¥2) ( 1= ))f(y)
2
+(,1—1)f f(O)(z -t 2exp(t( _t))dt
=3 ZZ

7y 2
- pz f G - r)”exp( = )d]
0 Hz—1)

y(z—yz2¥ ' exp (555 ) f(72)
SR (%) + D [f(2):]

[ (w)
P2 2 JZ2'S| -1 .
+ mDZ w2 f(2);y] = IDZ “p[ f(Z)»y]-

Secondly, taking derivative from the definition of the upper incomplete integral operator, we get

d pz’
d_z( @)y = F(,u)d (f JO@ - 1GXP(( _t))d)

[ —yf(@y)(z—zy)* " exp (U_—fy))

2
w0 [ oo p55 )

2
+psz<r><z—r>ﬂ3exp( = )d

_
- T'(w

Hz—1)

— - _ 2 pZ2
PZLI f(z—1) eXp(t(Z_t))dt]

_ @G - e ()
(@)

+ DM f(2); y)
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pz 2~ P2 Si-ppy -1
- D H.P . _ D U,p . )
P Doy VO T @]

O

Using the above theorem, in the following definitions, we extend the domain of analyticity of both
DYP [ f(z); y] and D2 { f(z); v} to the right half-plane and hence we call them as the uth order extended
upper and lower R-L derivative operators.

Definition 2.9. The uth order extended upper R-L derivative operator is defined by

d y(z=y2)' ™ exp (72
D Lf@iy] = o (DA77 [f@2:y]) - TG _ﬂ)(y(l ”)f(yz)

- DI @iy + D [ ]
—

)24
p(u—1)

for each successive region 0 < Re(u) < 1,1 < Re(u) < 2,--- (u # 0), provided that f,z™' f € L, [0, yA].
Definition 2.10. The uth order extended lower R-L derivative operator is defined by

y(z—y2)'*exp(5%5)
ro-m Y

— D (f@y) + D [ () y)
1 —p

Pz
uu—1)

d
DEP(f@y) = o (DA A f@iv) +

for each successive region 0 < Re(u) < 1,1 < Re(u) < 2,--- (u # 0), provided that f,z"' f € L, [0, A] .

Remark 2.11. It is important to mention that the definition of D¥" [f(z);y] given in (10) does not
require the condition Re(u) < 0 since the interval of integration in this definition is [0, y] with0 <y < 1.
Therefore the formula (10) is valid for all u € C.

Example 2.12. Let Re(1) > —1, Re(u) < 0 and Re(p) > 0. Then

B,(1+1, —,U;p)zd_ﬂ
I (—p) '

In the next theorem, we present useful representations of the extended upper and lower R-L deriva-
tives of an analytic function.

D*P[Zy] =

Theorem 2.13. If f(z) is an analytic function on the disk |z| < R and has a power series expansion
f@) = Xy ca”, then for Re(d) > 0 and Re(p) > 0 we have

Z/l—y—l *©
DHPIZ f(2)sy] = Ny Z:(; a,By (1 +n,—u; p) 7", (2.3)
and
PyA-1 col ¢ ) n
D fayiy) = ¢ (_m;anBl_y<—u,ﬂ+n,p)z.
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Proof. Since the function is analytic in the given disc, its series expansion is uniformly convergent.
Using the relation in the above Example,

By(A+1, —u;p)ZH
(=) ’
(Re(2) > —1,Re(p) > 0),

D*PIZYy) =

we get
DA f@y] = ) @Dy
n=0
= i a o7 f y(uz)“"_l(l —u) " exp P\ au
oy nF(—) u(l —u)
_ﬂ 1 o
= F(—,u) ZanB A+n,—u;p)7".
Similarly,

D (@) y) = aan;’P {2ty

A+n— 1 1
Oan(r( f(uz) —u) exp( (1_u)) )

= F(—/,t) ZanBl—y( /’ta/l+n p)Z )

:Mg :Mg

using uniform convergence of the series and absolute convergence of the integral under the given
conditions. O

Now we consider the Mellin transform of the extended incomplete beta function. For Re(s) > 0, we

have
RN Y -1 —p
M(By(X, zZp)ip o S) = L ps (fo t (1- Z)y exp (m)dt) dp

=TI'(s)By(x + 5,2+ ).

Therefore, from the inverse Mellin transform, we have

1 C+100
By(x,z;p) = i f L(s)By(x + s,z + s)p~ds.

—joo
Using this result, we have

/l—/ll s

D @ = m )ZanBymn 45 p) 2"

Electronic Research Archive Volume 30, Issue 5, 1723-1747.
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£+100
Z f [(s)By(A+n+s,—pu+s)p°ds?"

F (—,U)
/l—,u—l C+ico S
V4 s )
= 217l (_/J) i F(S)P (; anBy(/l +n+s,—u+ $)Z ]ds

where we have interchanged the contour integral and the series by considering that the function is
analytic in the given disc and Re(s) > 0, Re(p) > 0, Re(1) > 0.
Now we consider the case p — 0, which gives

—H
D*P [f(2);y] == I

the incomplete lower R-L fractional integral operator. Recalling the incomplete beta ratio

_By(p.q I 1
L9 =30, B(p,q)f =T,

the following complex contour representation of this function was given in [32] for p < 1,p + g >

0,0<d<1; .
p(l _ )q d+ico B B dr
L= =02 [ e
Tl d—ico T—X

The condition p < 1, which is important for the evaluation of the contour integral, can be cancelled by
using the analytic continuation principle. Using the above integral representation, we have for A—u > 0
that

A—u—1
l)g‘[z”‘lf(z);y] - )ZanB A+n,-p)z7"
Al & By (/l+l’l, —,U) n
F(—,u)Z B TR

/l
e Z anl, (X + n,—p)B (A + n, —p1) 2"

—M 1 * y/l+n(1 y) —u fd —/l—
n 1 _
F(—,u) Z d-ico (

< W(l_y) ”fdﬂw—ﬂ(l_”ﬂza B(A+n, —u)( ) dr
- 4 n

5 _/J) Zn

2mil (—p) ico T-x A
FH Iy (1 - )" fd”“’ Sk Z PO (4 (8
B, —)  Jyiw  T-x A QA-w,\yr)
For instance, let’s choose f(z) = ,F (a1, -- ,ap;by,--- ,by;2) with p < g, which is an entire func-

tion on the whole domain. From the above result, we can immediately write an elegant contour integral
representation:
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D/; [Z/l_lqu(ab'” aap;bh'” 7bq’Z)7y]

:Z*WWHl—wﬂtf“mr”a—rw
27l (—p) d

T—X

b4
prq(/l,al,-n Ay by, ,bq,/l—,u;y—T dr.
The heading levels should not be more than 4 levels. The font of heading and subheadings should be
12 point normal Times New Roman. The first letter of headings and subheadings should be capitalized.

3. Extended incomplete 7-Gauss and confluent hypergeometric functions

The main aim of this section is to initiate the study of the extended incomplete 7-hypergeometric
type function and the extended incomplete 7-Appell functions, where, as mentioned in the introduction,
the investigation of the usual cases was a concern of the recent years. The second aim of the section
is to make the preparation for the next section, where we obtain their generating relations. We should
note here that the results obtained in Sections 3 and 4 are reduced to the incomplete versions in the
case p — 0, where the reduced results will be new for 7—incomplete special functions discussed in
these sections.

We shall introduce the extended incomplete 7-Gauss and confluent hypergeometric functions in
terms of the extended incomplete beta function B,(x, z; p) , as follows :

(o)

. . By (b+tn,c—b;p) "
R (23] = 2R (a[boeiy]i2) = Z_;(“)" “Be-bb Al G-
(Re(p) >0,7>0, |zl <1, Re(c) > Re(b) > 0)
and
. . B, (b+1n,c—b;p) 7"
W] = 0 eyl = ) S R (32)

n=0

(Re(p) >0,7>0, |zl <1, Re(c) > Re(b) >0).

Remark 3.1. The special case of the definitions (3.1) and (3.2) when v = 1 and p = 0 are easily seen
to reduce to the incomplete Gauss and confluent hypergeometric functions [15]:

2Fl(a’ [b’C;y] ;Z) = Z (a)n [b’C;y]n%

n=0

and

[Se] Zn
Fillb.eiylid) = ) lbeiyl
n=0

Also, it should be mentioned that in the special case of (3.1) and (3.2) when p — 0, we arrive at the
new definitions which can be called as the incomplete T-Gauss and confluent hypergeometric functions
as follows:

o B,(b+tn,c—b) 7"
RT . = RT b ; ; = : !
2RT [z9] = 2R] (a,[b, ¢;¥]52) ;(a)” B(c-b,b) n!

: (3.3)
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O<y<l1,t>0, |z <1, Re(c) > Re(b) > 0)

and

> B, (b+1n,c—b) 7"
191 (53] = 1¢I([b,0;y];z):z };(Cinbcb) )%_

n=0
O<y<l1,t>0, |z <1, Re(c) > Re(b) > 0)

(3.4)

In the following propositions, we obtain integral representations and derivative formulas for incom-
plete 7-Gauss and confluent hypergeometric functions.

Proposition 3.2. The extended incomplete T-Gauss hypergeometric function can be represented by an
integral as follows:

_—p)du, (3.5)
uy)

b 1
2R(IT,P) (Cl, [b, C;y] ;Z) = m L ub‘l(l _ uy)c—b—l(l _ (uy)TZ)—a exp (uy(l -

p>0;p=0 and |arg(1 — z)| < m,Re(c) > Re(b) > 0.

Proof. Replacing the extended incomplete beta function in the definition (3.5) by its integral represen-
tation given by (1.8), we have

1 N (7 -p
(T.p) I — il b+tn—-1,1 _ c—b-1
2R (a,[b, ey y]52) = Ble—b.b) E_O (a), 3 L t 1-9 exp(t(1 — t))dt.

From the uniform convergence, summation and integration can be interchanged. Then, we have

1 Y -p
R(T,,D) b, c:y]:z) = —f tb+‘m—1 1—7 e=b=1r1 _ )@ dt
R el = gy ), AT A e i

_ Y s o Ne=b=1g1 (1 NT N-a P
_B(c—b,b)‘fou (I —uy)™ (1 = (uy)'2) eXp(—uy(l—uy))du'

O

Corollary 3.3. If p is set to 0 in the above proposition, we reach the result corresponding to the
incomplete T-Gauss hypergeometric function which is given as follows:

b 1
i : : = Y - c=b— T \"a
2R} (a.[b,c;y]:2) = mﬁ W (1= uy) ™ (A = (uy) 7)™ du,
Re(c) > Re(b) > 0, |7] < 1.
Proposition 3.4. For the extended incomplete T-confluent hypergeometric function, we have the fol-
lowing integral representation:

-P

——— + (uy)" z| du.
wy(—uy)

b 1
(T.p) oyl Y b-1 c—b—1
¢ (b S 1 -
19,7 ([b, ¢;y] 3 2) Blc—b. )L w— (1 —uy) exp(
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Corollary 3.5. If we set p = 0 in the above theorem, we can give the corresponding result for the
incomplete T-confluent hypergeometric function as follows:

b 1
. 1N y b—1 c—b-1 _(uy)'z
- 1- .
1¢]([bacay]’z) B(C—b,b)v[(; u ( u)’) e du

Proposition 3.6. The equation shown below holds true for the incomplete T-Gauss hypergeometric

function:

d" b
P [2R] (a,[b,c;y]52)] = % 2RI (a+n,[b+1n,c+1n3y]:2). (3.6)

Proof. Using (3.3), differentiating on both sides with respect to z, we get

d a Y - c—b- T\—a—
7= [2R] (a,[b,c;y]:2)] = mf AT ) Sy O I A
“b,b) J

a Y
P — l(b+T)—1 1—1¢ (c+1)—(b+71)-1 1 - tT —(a+1)dt
B ), (-2

_a(b), 1
" (¢), Blc=b,,b+71)

"y
f t(b+T)_1(1 _ t)(C+T)—(b+T)—1(1 _ ZtT)_(a+l>dt.
0

which is (3.6) for n = 1. Recursive application of this procedure yields the general result. O
In a similar manner, we have the following.

Proposition 3.7. The equation shown below holds true for the incomplete T-Gauss hypergeometric

function:

d" b)ey
g Lig1([b, c5y]52)] = Ec;m

In the following theorem, we give expressions for the Mellin transforms of the extended incomplete
7 -Gauss hypergeometric function an expression which involves incomplete 7-Gauss hypergeometric
function.

101([b + T, ¢ + T Y] 5 2).

Theorem 3.8. The extended incomplete T-hypergeometric function has a Mellin transform which can
be written as follows :

I'(s)B(c—b+s,b+5)

(T.p) ‘yvliz): =
sm{le (a,[b,c,y],Z)-P_’S}‘ B(c—b,b)

2R (a, [+ s,c+2s3y]:2). (3.7

Proof. To get the Mellin transform, multiplying (3.5) by p*~'and integrate over the interval [0, co) with
respect to p to get

MR (a,[bocy]52) i p = s) = fo PSR (a, b e y]52) dp

_ yb : b—l(l_ )c—b—l(l_ ( )‘r)—a
“Be-bbJy U o

fw ps_1 exp (——p) a’p] du. (3.8)
0 uy(l — uy)
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Setting p = tuy(1 — uy) in (3.8),

f - Pl exp (——p)dp = f ) £ uy) (1 — uy)* exp(~t)dt
0 uy(l — uy) 0

= (uy)'(1 — uy)* f ) ' exp(-)dt
0
= (uy)’(1 —uy)'T (s).
Thus we get

MR (@, [bocy]s2) i p = s

b+s 1
YT (s) i e )
= —_ s 1_ c s 1_ ~—a
Be—bb) )y © QTN -y du
I's)Bc—=b+s,b+s ]
= (s) lg(c_b’b) )2R1(a,[b+S,C+2S;y];Z).

Remark 3.9. Setting s = 1in (3.7), we get
b(c—Db)
c(c+1)

By means of the extended incomplete beta function By(x, z; p) stated by (1.8) , we introduce the
extended incomplete T—Appell’s functions as follows:

f R (a,[b,c;y]52)dp = 2Ri(a.[b+1.c+2:y]:2).
0

= By(A+Ttm+tn,u—A;p) X" "

T.p - eyl — E y >
Fl [/1,0’,[3,/1, x’Z’y] - P B(l,l—/l,/l) (a)m (ﬁ)n m‘]’l!’ (3.9)

 Bi_,(u— A, A+T1m+7tn; p) X" 7"

T.p . cyl — E Y _ >
Fl {/l’a(’ﬁ’/laxazuy} - B(/J—/l,/l) (a)m (ﬁ)n m!l’l!’ (310)

m,n=0
where max{|x|, |z|]} < 1, and

[ee)

. B,B+1m,y =B, p) By(A + 1n,u = A, p) X" 2"
F la, B, A4y, 15,2, y] = (@) — (3.11)
m;() B(y -B.B) B(u—1,4) m!n’
- Bi_y(y =B, +1m; p) Bi_y(u—A, 1+ t0; p) x" "
T.p . . ol — y 4 p
F2 {(I’ﬂ’ /1,')’,#, X9Z9y} - Z (a)n+m B(fy_ﬁ,ﬁ) B(/J _ /l, /l) m' n!. (3.12)

m,n=0

where |x| + |z| < 1.

Remark 3.10. The special case of the definitions (3.9-3.12) when T = 1 and p — 0 are easily seen to
reduce to the incomplete Appell’s functions [15]:

n

00 xm z
(L@ B ziy] = Y A @B, max{lad el < 1
m,n=0 In!
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and .
xm Zn
FUd, @155, 25} 1= ) ALY men( @Bl =7, max{lal, Jal} < 1
=0 m.n.
and
o xm n
ol B 4y 2,231 = ) @By ¥l gyl =+l < 1
m,n=0 !
and

mzn
Fola, B A5y, 1%, 23y Z<a>m+n{ﬁyy gy el < 1.

m,n=0

Also, in the case of p — 0, we can give the incomplete versions of the T—Appell’s functions as follows:

— By(A+tm+1n,u—A) X" "
Flld a,Bipx,23y] = - (@) (B, (3.13)
mZn::O B(u—-4,2) m!n!’
o Biy(u— A, A+ 71m+1n) x" 7
FT /l’ S PSS X, 25 = m n__ 4 4 314
A B s %, 23 ) mZO e G (3.14)

By(B+tm,y — ) By(A+1tn,u - /l)x
B(y -B.8) Bu—A,1) m!'n!

FilonBo sy s 6,531 = ) @ (3.15)

m,n=0

and

i @, BO BB+ B G Ak ) 2

B(y —B.B) Bip-v mm 1O

Fi{a,B, 4y, 15 x, 2y} =

m,n=0
and we call these functions as the incomplete T-Appell’s functions.

We can rewrite the series for incomplete 7-Appell’s functions in terms of the incomplete 7-Gauss
hypergeometric functions, so that

R (@ +n, B,y ¥ )

. - B,(A+tn,u—A)
Filan B, sy s 6,251 = ) (@), =

Bu—4,2)

In the following proposition, integral representations of the extended incomplete 7-Appell’s functions
are given.

Proposition 3.11. The extended incomplete T-Appell’s functions can be represented by an integral as
Jfollows:

2 I
FYP[A, @, B 15 %, 23 y] = mjo‘ w1 =y (1 = x(uy)) ™ (1 = z(uy)) P

x exp|————|du, p>0;p=0and |arg(1 - x)| <, (3.17)
uy(l — uy)

|arg(1 — 2)| < 7, Re(w) > Re(2) > 0, Re(e) > 0, Re(B) > 0,
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and
FyPla, B sy, s X, 25 y) = i fl fl (L= uyy P (1 =yt
S Bly =B.8)B(— 4.0 Jo Jo
T (py)T ) P P
X (1= (uy) x—(vy)2) exp(uy(1 ~ uy))eXp(vy(l ~ vy))dudv,
p>0;p=0 and Iarg(l - x- z)| < 7, Re(u) > Re(1) > 0,
Re(y) > Re(B) > 0, Re(a) > 0. (3.18)

Proof. Replacing the extended incomplete beta function in the definition (3.9) by its integral represen-
tation given by (1.8), then we have

FP[A, @, B w5 x, 23 Y]

1 N x" ' A+tm+Tn—1 -A-1 —p
= = prTmETn 1= dt.
Bi— 1) };O(O‘)m(ﬁ)" m!n!fo (=0 exp| 7

From the uniform convergence condition, summation and integration can be swapped. Then, we get

FYP1A, . B; 5 %, 2y

__ e PN B R e AR Se _p
_B(,u—/l,/l),gt (1 -0 (I =xt)™ (1 =zt exp(t(l_t))dt

_ s e _ -1 a1 B ( -p
- g | =y st =t exp |

Whence the result. In a similar manner, formula (3.18) can be proved. O

If p is set to O in the above proposition, we have the following corollary:

Corollary 3.12. The incomplete T-Appell’s functions can be represented by an integral as follows:

pl 1
Fil4, B 15 x, 2, y] = mﬁ w1 = uyy ™ (1 = x(uy)) ™ (1 = 2(uy)) 7 du,

Re(u) > Re(1) > 0,Re(a) > 0,Re(B) > 0, x ¢ [1,00), z¢ [1,0), (3.19)

and

148 1 Al

T ) o M -1 —B-1 -1 —a-1

Fila,B, 4;y, u; x,2;,y] = f f A = uy) P — vy
: By =B,B)B(u— 4, Jo Jo

X (1 = (uy)" x = (v)" )™ dudv,
Re(u) > Re(2) > 0,Re(y) > Re(B) > 0,Re(a) > 0, |arg(1 —x —2)| < 7. (3.20)

Now we evaluate the following fractional derivative formulas, which we shall need them in the
derivation of the generating functions in Section 4.
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Proposition 3.13. Let Re(u) > Re(1) > 0, Re(p) >0, Re(a) >0, re Nand |z| < 1. Then

DI (1 =2y ?8; R (@ [, y]:27)
and ra
DI (1= 2) sy} = r&?ﬂlﬁwmruuy}) (3.21)

Proof. We have

D/l—,u,p[ A-1 (1 _ T)—a . ]

I“(y /1)[ )™ (1 = (u))™ " (1 — )l 1exp( (lfu))du

= ﬂ 1 A =y A = () ) Y exp (_—p)dt
-2 1y(1 —ty)
By (3.5), we can write
DI (1 =)y = 2 p- 2R (@, [4,p155]:27)
' F'u-2)
- O R @A),
Whence the result. In a similar manner, formula (3.21) can be proved. O

Proposition 3.14. Let Re(u) > Re(1) > 0, Re(8) > 0, Re(a@) > 0, Re(p) > 0, 7 € N; |7 <
min(%, %). Then

A
DI (1= az') ™ (1= b)) s y] = rﬁﬂi U A @i a2t b ]

and
r (/l)

1 p(7.p)
F(,u) A a0, By s az’, by (3.22)

DI (1 = az) ™ (1= b2) Py} =
Proof. Direct calculations yield
DI [ TN = az) ™ (1= bz) Py

f W)™ (1 —a2))™ (1 - buz)) P (1 —up™ 1exP(

p
rw ) uﬂ—qu

Zyl/l

“Tu-2

4
X ex _— dt
p(ry(l —ty))

By (3.17), we can write

f A1 (1= alty) 2 (1= b (ty) 27 (1 =ty

=, - ™~ T\~ Zﬂ_l T, T T
DI (1= a2y (= b Foy) = o Bl = DF7 [ . fipisail b2
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T
T

Hence the proof is completed. In a similar manner, formula (3.22) can be proved. m|

i ]F(T”)[/l a,B; w;az’, bz y].

Proposition 3.15. For Re(u) > Re(1) > 0, Re(8) > 0, Re(a) > 0, Re(p) > 0, Re(y) > 0, 7 €
N; |t=| < 1and|f +1zl < 1, we have

r (/l)

- - N— T, t
Dﬁ””’[z“(l—z) 2R(1p)(6¥,[,3,)’;y];?f)] @

A S N W ATIR A B
Proof. Using Example 12 and (3.15), we have

Dﬁ_ﬂ’p I:Z/l—l (1 _ ZT)—(I ZRgT’p) (a,’

=)

1 o0
=o [ZM 1=20" Gtos > eB e eny i)
? n=0 ’

t )”_
1-7 24

1 ad " —a-n
D | (a)n By(B+tn,y=Bip) =1 -2)""3y
4 n!

" B -B.B)

t” (@), (@ +n),
m!

ZB(,B+Tny B )

m,n=0

ZB(,8+Tny B )

m,n=0

-~ Fo-p Dr |2t

1" (a)n+mB (A+7tm,p— A; p)
m! 'u-2a)

pu+Tm—1

" By - ﬁ B)
TWw

/‘IF(TP)Q,B/I)/,,U,IZ ;Y
) [ I
O

In the case p — 0, we list the consequences of the above propositions for the incomplete 7-
hypergeometric functions below:

Corollary 3.16. Let Re (@) > 0, Re(u) > Re(1) >0, t e Nand |z| < 1. Then

I'(2)
L)

Corollary 3.17. Let Re(u) > Re(1) > 0, Re(8) > 0, Re(a) > 0, T € N; |z] < min(2, ;). Then

DN (1 =) y] = =227 R (a, [ ] 7).

T (1)
T

Corollary 3.18. For Re(u) > Re(d) > 0, Re(B) > 0, Re(y) > 0, Re(a) > 0, T € N; |{=| < 1 and
lt| + |z| < 1, we have

DI (1= a2y (1= by Piy] = =27 Fl [ @ B az”, b2 y).

'
()

t
P O ZRT( Byl z)] = =~ Fila.f Ay it 2y
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4. Generating functions
Here we shall obtain linear and bilinear type generating relations for the extended incomplete -
hypergeometric functions.

Theorem 4.1. The extended incomplete T-hypergeometric function can be represented by a linear
generating relation as follows:

- (/l)n T, T n — T, ZT
Z e R (A +n, e, B;y]:27) " = (1 =7 LR (/l, la. 3]s 75 t) (4.1)
n=0 :

where T € N, |z| < min{1, |1 — ¢#|}.

Proof. By expanding as a binomial series, we have for |¢| < |1 — 7| that

T

o /ln " )
(-t ) O (L )=[(1—z’)—t]‘”=(1—t)‘”[1— : ] .
n=0 :

1-77 1-1¢

Multiplying by z%~! on both sides and applying the extended incomplete fractional derivative operator
D2 PP £(2); y] on both sides, we have

3 (), toy -
Z ( )' (1 _ ZT)—/I( ) Za—l;y — (1 _ Z‘)_/ng_ﬂ’p [Zaf—l [1 _ Z ] ’yl .
~d n! 1-7 1-1¢

Swapping the summation and integration, we get

@—p,p
DZ

v (A N + 11
(_)D(ZY—,B,P [Zd—l(l _ Z‘r)—/l—n;y] = (- t)—/lD?—IB,p lza_l [1 _ < ] ;y:| .
= 1 -1
Using Proposition 6, the result follows. g

Theorem 4.2. The extended incomplete T-hypergeometric function can be represented by a linear
generating relation as follows:

N (/l)n T T\ N1 - T T ZT
TZR(l p)@_n,[a’,ﬁ;)ﬂ;z )t = (1 _t) 1 F(l P) a,apa/l;ﬁ;z s 1 _tay

n=0

1

where T € N, |t] < E

Proof. By expanding as a binomial series, we have for [¢| < |1 — 77| that
=) a .
Z «w (I=z)"=[1-1-z]"=(1-n"

|
= n:

7r ™
1—t] '

Multiplying by z%~!(1 — z7)™ on both sides and applying the extended incomplete fractional derivative
operator D2 ?”[ f(2); y] on both sides, we have

1+

(o] T -A
a—f3,p @ a—1 _T\—ptnn, _ N Apa-Bp|a-l1 _ T\p _ —zt .
D Z_;mz (1-2) r,y]—(l 07'D: [z (1-2) [1 —| o
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Interchanging the order, we get

r, 14
> D pesn o011 = gy 0y ¢ = (1 - ) ”D“-ﬂ”[“la )P[l—‘“] ;yl.
n=0 n! 1-1

To get the desired result, we use Propositions 6 and 7. O

Theorem 4.3. The extended incomplete T-hypergeometric function can be represented by a bilinear
generating relation as follows:

/l T _Tt
S DR oy, iy, R (L e Biy] ) = (11 ”F(”’)[“”“ T
n=0 )

where T € N, 1] < = 1+|x| d and || < 1.

Proof. Starting from (4.2), we replace t with (1 — x")t, introduce a factor of x”~!, and apply
DY P[f(x);y]. Then we have

(o) ﬂ u .
DY lz %xy‘l 2R(1 P+ n, [a.B;y]:27) (1 - x’)”t";y}

n=0

=D (1= (1 = xR A, [, B ;—ZT vl

Provided that |z] < 1, |1—xt

< 1and |1 t| + |]’" | < 1, we can interchange the order to obtain:

Dy - T T
Z(n) D}/ 5[7[ Y 1(1—XT)n;y] 2R(1’p)(/l+n,[a/,ﬁ;y];z)
n=0

z

-1 v
o _ X't - i
=(1-n"D? 54’[)&1( 1_t) zRﬁ”’)(A,[a,ﬁ;y];ﬁ);y}'

1-¢

To get the result, we use Propositions 6 and 8. O

In a similar manner, the linear and bilinear type generating relation can be given for incomplete
7-hypergeometric function.

Corollary 4.4. The incomplete T-hypergeometric function can be represented by a linear generating
relation as follows:

(o) /l T
2 % 2R (A +n e By = (1-D7 oK (ﬁ, [, B3] )
~ n! I -1

Corollary 4.5. The incomplete T-hypergeometric function can be represented by a linear generating
relation as follows:

[

>

n=0

_ 7't
—n[a,B;y]:2) " =1 -t F] [a,p,ﬂ;ﬁ;zﬁl—_t;y].
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Corollary 4.6. The incomplete T-hypergeometric function can be represented by a bilinear generating
relation as follows:

>

n=0

75 =Xt

(n[%éy]X)zRT(/Hn[CVﬁy]Z)t—(l—t)‘FTﬂcwﬂé T T

’y

Here we shall obtain linear and bilinear type generating relations for the extended incomplete 7-
hypergeometric functions.

Theorem 4.7. The extended incomplete T-hypergeometric function can be represented by a linear
generating relation as follows:

Z(i) R (A+n,[a,B;y]:2) " = (1-0)7" R(”’)( e Byl Z_T t) (4.2)

n=0 1
where T € N, |z] < min{1, |1 — 7]}.
Proof. By expanding as a binomial series, we have for |f| < |1 — 77| that

00 /ln n T —A
a0 R () =0 -rt-as - )

Multiplying by z%~! on both sides and applying the extended incomplete fractional derivative operator
D[ £(2); y] on both sides, we have

@, N (/l)" T\~ ! ! a— - @, a— ZT -
D; ﬂ’p[ py (1—Z)A(1_Zr)z ‘;y%(l—t) Dy ﬂ’p[z 1[1—1_t] ;Y|
n=0 '

Swapping the summation and integration, we get

r 11
(ﬂ)nDa—pr[ a— 1(1 z )—/1 n. ] — (1 _ t)—/lD?—,B,p lza—l [1 _ < ] ,y:| .
n!

n=0
Using Proposition 6, the result follows. O

Theorem 4.8. The extended incomplete t-hypergeometric function can be represented by a linear
generating relation as follows:

o (D

1
nOn

R (o =, [e. iyl )" = (A =07t FP [a, P BT S

_ZTZ‘.
_t’y

where T € N, |f] < l+|z|

Proof. By expanding as a binomial series, we have for |¢| < |1 — 7| that

(9

Z A)" —)=1-0-H"=1-n"

n=0
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Multiplying by z%~'(1 — z7)™ on both sides and applying the extended incomplete fractional derivative
operator D2 ?”[ f(z); y] on both sides, we have

. 14
Da—ﬁp Z(/l)n a— 1(1 Z)—p+n ",y]—(l 1 /lDa—,Bpla 1(1 )p|: _Zl] ’yl
n=0

-1

Interchanging the order, we get

(/1),, a—B.p | a-1 —(p-n). _ -Apya—B.p | a-1 ™N—p -Z't K .
DI 271 = )y = (=T D T (- 2y | - y|-
n! 1-1¢

n=0
To get the desired result, we use Propositions 6 and 7. O

Theorem 4.9. The extended incomplete T-hypergeometric function can be represented by a bilinear
generating relation as follows:

Z@ SR (=, [y, 63155, RTP (A + m, [, B y] 2 1 = (11)” ”F(”’)[MY“ TR y]

14

where T € N, |t] < o

and |z] < 1.

Proof. Starting from (4.2), we replace ¢ with (I — x7)¢, introduce a factor of x”~!, and apply
DY *P[ f(x);y]. Then we have

y—0,p
D)C

= D T. 4 Ty
Z%XH 2R (A4, [, Biy]:2) (1-x7) ’”;y}

n=0

= D (1= (1= R (4[] o]
X [( ( x)) X 2 1 ’[a,’ﬁ’y]’]—(l—xT)[ ’y

Provided that |z] < 1, |+t

< 1 and |ﬁ| + |lx—_’t| < 1, we can interchange the order to obtain:

A n — T\N T, T
x 3 DY [ (1 = XYy | oRTP (A + [ B3] 1)
n=0 n:
- yy—6. -1 —x'T\ (T.p) it
=(1-9 DZC/ P1xY 1—1 p R (/l[aﬁy] ﬁ)y
1-t
To get the result, we use Propositions 6 and 8. O

In a similar manner, the linear and bilinear type generating relation can be given for incomplete
7-hypergeometric function.

Corollary 4.10. The incomplete T-hypergeometric function can be represented by a linear generating
relation as follows:

(o)

()
2

n=0

T+ n o Byl = (1 =07 2R (ﬂ, . 8; ] 1Z— t).
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Corollary 4.11. The incomplete T-hypergeometric function can be represented by a linear generating
relation as follows:

[

>

n=0

T n - T T _ZTt
-m eyt =1 -0 F [a,p,ﬂ;ﬁ;z 7 _t;y]-

Corollary 4.12. The incomplete T-hypergeometric function can be represented by a bilinear generating
relation as follows:

[ee)

>

=0

T

(=, [y 83 y]5 60, R (A m e Biy] s 20) ' = (1= 1) ﬂF’[ﬂwﬁé = ]
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